
MATH2070: LAB 5: Multidimensional Newton’s Method

Introduction Exercise 1
Modifications to newton.m for vector functions Exercise 2
A complex function revisited Exercise 3
Slow to get started Exercise 4
Nonlinear least squares Exercise 5
Softening (damping) Exercise 6
Continuation methods Exercise 7
Quasi-Newton methods Exercise 8
More On Minimization: Extra Exercise 9

Exercise 10
Exercise 11
Exercise 12
Exercise 13
Extra Credit

1 Introduction

Last time we discussed Newton’s method for nonlinear equations in one real or complex variable. In this
lab, we will extend the discussion to two or more dimensions. One of the examples will include a common
application of Newton’s method, viz., nonlinear least squares fitting.

This lab will take three sessions. If you print it, you might find the pdf version more convenient.

2 Modifications to newton.m for vector functions

Suppose x is a vector in RN , x = (x1, x2, . . . , xN), and f(x) a differentiable vector function,

f = (fm(x1, x2, . . . , xN)), for m = 1, 2, . . . , N,

with Jacobian matrix J ,

Jmn =
∂fm
∂xn

.

Recall that Newton’s method can be written

x(k+1) − x(k) = −J(x(k))−1f(x(k)). (1)

(The superscript indicates iteration number. A superscript is used to distinguish iteration number from
vector index.)

As an implementation note, the inverse of J should not be computed. Instead, the system

J(x(k))(x(k+1) − x(k)) = −f(x(k)).

should be solved. As you will see later in this course, this will save about a factor of three in computing
time over computing the inverse. Matlab provides a special, division-like symbol for this solution operation:
the backslash (\) operator. If you wish to solve the system

J∆x = −f

1

then the solution can be written as
∆x = −J\f .

Note that the divisor is written so that it appears “underneath” the backslash. Mathematically speaking,
this expression is equivalent to

∆x = −J−1f

but using \ is about three times faster.
You might wonder why Matlab needs a new symbol for division when we have a perfectly good division

symbol already. The reason is that matrix multiplication is not commutative, so order is important. Multi-
plying a matrix times a (column) vector requires the vector to be on the right. If you wanted to “divide” the
vector f by the matrix J using the ordinary division symbol, you would have to write f/J, But this would
seem to imply that f is a row vector because it is to the left of the matrix. If f is a column vector, you would
need to write fT /J, but this expression is awkward, and does not really mean what you want because the
result would be a row vector. The Matlab method:

J\f

is better.

Exercise 1:

(a) Start from your version of newton.m from Lab 4, or download my version. Change its name to
vnewton.m and change its signature to

function [x,numIts]=vnewton(func,x,maxIts)

% comments

and modify it so that it: (a) Uses the Matlab \ operator instead of scalar division for increment;
(b) uses the norm of the increment and norm of the old increment instead of abs to determine r1
and the error estimate; (c) has no disp statements; and, (d) has appropriately modified comments.
(Leaving the disp statements in will cause syntax errors when vector arguments are present, so
be sure to eliminate them.)

(b) Test your modifications by comparing the value of the root and the number of iterations required
for the complex scalar (not vector) case from last time (f8(z) = z2+9). This shows that vnewton
will still work for scalars. Your results should agree with those from newton. Fill in the following
table (same one as last lab, except the final line). Recall that the column norm(error) refers to
the true error, the absolute value of the difference between the computed solution and the true
solution.

Initial guess numIts norm(error) numIts(newton)

1+i _______ _________ ______________

1-i _______ _________ ______________

10+5i _______ _________ ______________

10+1.e-25i _______ _________ ______________

3 A complex function revisited

It is possible to rewrite a complex function of a complex variable as a vector function of a vector variable.
This is done by equating the real part of a complex number with the first component of a vector and the
imaginary part of a complex number with the second component of a vector.
Reminder: In Matlab, you denote subscripts using parentheses. For example, the 13th element of a vector
f would be denoted f13 mathematically and f(13) in Matlab.

2

Consider the function f8(z) = z2 + 9. Write z = x1 + x2i and f(z) = f1 + f2i. Plugging these variables
in yields

f1 + f2i = (x2
1 − x2

2 + 9) + (2x1x2)i.

This can be written in an equivalent matrix form as[
f1(x1, x2)
f2(x1, x2)

]
=

[
x2
1 − x2

2 + 9
2x1x2

]
(2)

Exercise 2:

(a) Write a function m-file f8v.m to compute the vector function described above in Equation (2)
and its Jacobian. It should be in the form needed by vnewton and with the signature

function [f,J]=f8v(x)

% comments

where f is the two-dimensional column vector from Equation (2) and J is its Jacobian matrix.
Hint: Compute, by hand, the formulas for df1dx2 (= ∂f1

∂x2
), df1dx1, df2dx1, and df2dx2. Then

set

J=[df1dx1 df1dx2

df2dx1 df2dx2];

(b) Test your vnewton.m using f8v.m starting from the column vector [1;1] and comparing with the
results of newton.m using f8.m and starting from 1+1i. Both solution and number of iterations
should agree exactly. If they do not, use the debugger to compare results after 1, 2, etc. iterations.

(c) Fill in the table below. Note that the norm of the error here should be the same as the absolute
value of the error for f8 in the previous exercise, and the correct solutions are[

0
±3

]
.

Initial guess numIts norm(error)

[1;1] _______ _________

[1;-1] _______ _________

[10;5] _______ _________

[10;1.e-25] _______ _________

At this point, you should be confident that vnewton is correctly programmed and yields the same results
as newton from the previous lab. In the following exercise, you will apply vnewton to a simple nonlinear
problem.

Exercise 3: Use Newton’s method to find the two intersection points of the parabola x2 = x2
1 − x1

and the ellipse x2
1/16 + x2

2 = 1.

(a) Plot both the parabola and the ellipse on the same plot, showing the intersection points. Be sure
to show the whole ellipse so you can be sure there are exactly two intersection points. Please
include this plot when you send me your work.

(b) Write a Matlab function m-file f3v.m to compute the vector function that is satisfied at the
intersection points. This function should have the signature

function [f,J]=f3v(x)

% [f,J]=f3v(x)

% f and x are both 2-dimensional column vectors

% J is a 2 X 2 matrix

3

% more comments

% your name and the date

Hint: The vector f=[f1;f2], where f1 and f2 are each zero at the intersection points.

(c) Starting from the initial column vector guess [2;1], what is the intersection point that vnewton
finds, and how many iterations does it take?

(d) Find the other intersection point by choosing a different initial guess. What initial guess did you
use, what is the intersection point, and how many iterations did it take?

4 Slow to get started

In Exercise 2, you saw that the guess [10;1.e-25] resulted in a relatively large number of iterations.
While not a failure, a large number of iterations is unusual. In the next exercise, you will investigate this
phenomenon using Matlab as an investigative tool.

Exercise 4: In this exercise, we will look more carefully at the iterates in the poorly-converging case
from Exercise 2. Because we are interested in the sequence of iterates, we will generate a special version
of vnewton.m that returns the full sequence of iterates. It will return the iterates as a matrix whose
columns are the iterates, with as many columns as the number of iterates. (One would not normally
return so much data from a function call, but we have a special need for this exercise.)

(a) Make a copy of vnewton.m and call it vnewton1.m. Change its signature line to the following

function [x, numIts, iterates]=vnewton1(func,x,maxIts)

% comments

(b) Just before the loop, add the following statement

iterates=x;

to initialize the variable iterates.

(c) Add the following statement just after the new value of x has been computed.

iterates=[iterates,x];

Since iterates is a matrix and x is a column vector, this Matlab statement causes one column
to be appended to the matrix iterates for each iteration.

(d) Replace the error function call at the end of the function with a disp function call. The reason
for this change is that you will be using vnewton1 later in this lab to see how Newton’s method
can fail.

(e) Test your modified function vnewton1 using the same f8v.m from above, starting from the vector
[2;1]. You should get the same results as before for solution and number of iterations. Check
that the size of the matrix is 2×(number of iterations+1), i.e., it has 2 rows and (numIts+1)
columns.

The study of the poorly-converging case continues with the following exercise. The objective is to try to
understand what is happening. The point of the exercise is two-fold: on the one hand to learn something
about Newton iterations, and on other hand to learn how one might use Matlab as an investigative tool.

Exercise 5:

(a) Apply vnewton1.m to the function f8v.m starting from the column vector [10;1.e-25]. This is
the poorly-converging case.

4

(b) Plot the iterates on the plane using the command

plot(iterates(1,:),iterates(2,:),’*-’)

It is very hard to interpret this plot, but it is a place to start. You do not have to send me a copy
of your plot. Note that most of the iterates lie along the x-axis, with some quite large.

(c) Use the zoom feature of plots in Matlab (the magnifying glass icon with a + sign) to look at
region with horizontal extent around [-20,20]. It is clear that most of the iterates appear to be on
the x-axis. Please send me a copy of this plot.

(d) Look at the formula you used for the Jacobian in f8v.m. Explain why, if the initial guess starts
with x2 = 0 exactly, then all subsequent iterates also have x2 = 0. Remark: You have used
Matlab to help formulate a hypothesis that can be proved.

(e) You should be able to see what is happening. I chose an initial guess with x2 ≈ 0, so subsequent
iterates stayed near the x-axis. Since the root is at x2 = 3, it takes many iterates before the x2

component of the iterate can “rise to the occasion,” and enter the region of quadratic convergence.

(f) Use a semilog plot to see how the iterates grow in the vertical direction:

semilogy(abs(iterates(2,:)))

The plot shows the x2 component seems to grow exponentially (linearly on the semilog plot) with
seemingly random jumps superimposed. Please send me a copy of this plot.

You now have a rough idea of how this problem is behaving. It converges slowly because the initial guess is not
close enough to the root for quadratic convergence to be exhibited. The x2 component grows exponentially,
however, and eventually the iterates become close enough to the root to exhibit quadratic convergence. It is
possible to prove these observations, although the proof is beyond the scope of this lab.

5 Nonlinear least squares

A common application of Newton’s method for vector functions is to nonlinear curve fitting by least squares.
This application falls into the general topic of “optimization” wherein the extremum of some function F :
Rn → R is sought. If F is differentiable, then its extrema are given by the solution of the system of equations
∂F/∂xk = 0 for k = 1, 2, . . . , n, and the solution can be found using Newton’s method.

The differential equation describing the motion of a weight attached to a damped spring without forcing
is

m
d2v

dt2
+ c

dv

dt
+ kv = 0,

where v is the displacement of the weight from equilibrium, m is the mass of the weight, c is a constant
related to the damping of the spring, and k is the spring stiffness constant. The physics of the situation
indicate that m, c and k should be positive. Solutions to this differential equation are of the form

v(t) = e−x1t(x3 sinx2t+ x4 cosx2t),

where x1 = c/(2m), x2 =
√

k − c2/(4m2), and x3 and x4 are values depending on the position and velocity
of the weight at t = 0. One common practical problem (called the “parameter identification” problem) is to
estimate the values x1 . . . x4 by observing the motion of the spring at many instants of time.

After the observations have progressed for some time, you have a large number of pairs of values (tn, vn)
for n = 1, . . . , N . The question to be answered is, “What values of xk for k = 1, 2, 3, 4 would best reproduce
the observations?” In other words, find the values of x = [x1, x2, x3, x4]

T that minimize the norm of the
differences between the formula and observations. Define

F (x) =
N∑

n=1

(vn − e−x1tn(x3 sinx2tn + x4 cosx2tn))
2 (3)

5

and we seek the minimum of F .
Note: The particular problem as stated can be reformulated as a linear problem, resulting in reduced
numerical difficulty. However, it is quite common to solve the problem in this form and in more difficult
cases it is not possible to reduce the problem to a linear one.

In order to solve this problem, it is best to note that when the minimum is achieved, the gradient f = ∇F
must be zero. The components fk of the gradient f can be written as

f1 =
∂F

∂x1
= 2

K∑
k=1

(vk − e−x1tk(x3 sinx2tk + x4 cosx2tk))tke
−x1tk(x3 sinx2tk + x4 cosx2tk)

f2 =
∂F

∂x2
= −2

K∑
k=1

(vk − e−x1tk(x3 sinx2tk + x4 cosx2tk))e
−x1tk(x3 cosx2tktk − x4 sinx2tktk) (4)

f3 =
∂F

∂x3
= −2

K∑
k=1

(vk − e−x1tk(x3 sinx2tk + x4 cosx2tk))e
−x1tk sin(x2tk)

f4 =
∂F

∂x4
= −2

K∑
k=1

(vk − e−x1tk(x3 sinx2tk + x4 cosx2tk))e
−x1tk cos(x2tk)

(One rarely does this kind of calculation by hand any more. The Matlab symbolic toolbox, or Maple or
Mathematica can greatly reduce the manipulative chore.)

To apply Newton’s method to f as defined in (4), the sixteen components of the Jacobian matrix are also
needed. These are obtained from fi above by differentiating with respect to xj for j = 1, 2, 3, 4.

Remark: The function F is a real-valued function of a vector. Its gradient, f = ∇F , is a vector-valued
function. The gradient of f is a matrix-valued function. The gradient of f , called the “Jacobian” matrix
in the above discussion, is the second derivative of F , and it is sometimes called the “Hession” matrix. In
that case, the term “Jacobian” is reserved for the gradient. This latter usage is particularly common in the
context of optimization.

In the following exercise, you will see that Newton’s method applied to this system can require the
convergence neighborhood to be quite small.

Exercise 6:

(a) Download my code for the least squares objective function F , its gradient f , and the Jacobian
matrix J . The file is called objective.m because a function to be minimized is often called an
“objective function.” (Our objective is to minimize the objective function.)

(b) Use the command help objective to see how to use it.

(c) Compute f at the solution x=[0.15;2.0;1.0;3] to be sure that the function is zero there.

(d) Compute the determinant of J at the solution x=[0.15;2.0;1.0;3] to see that it is nonsingular.

(e) Since this particular problem seeks the minimum of a quadratic functional, the matrix J must be
positive definite and symmetric. Check that J is symmetric and then use the Matlab eig function
to find the four eigenvalues of J to see they are each positive.

Exercise 7: The point of this exercise is to see how sensitive Newton’s method can be when the
initial guess is changed. Fill in the following table with either the number of iterations required or the
word “failed,” using vnewton.m and the indicated initial guess. Note that the first line is the correct
solution. For this exercise, restrict the number of iterations to be no more than 100.

Initial guess Number of iterations

[0.15; 2.0; 1.0; 3] ______________

6

[0.15; 2.0; 0.9; 3] ______________

[0.15; 2.0; 0.0; 3] ______________

[0.15; 2.0;-0.1; 3] ______________

[0.15; 2.0;-0.3; 3] ______________

[0.15; 2.0;-0.5; 3] ______________

[0.15; 2.0; 1.0; 4] ______________

[0.15; 2.0; 1.0; 5] ______________

[0.15; 2.0; 1.0; 6] ______________

[0.15; 2.0; 1.0; 7] ______________

[0.15; 1.99; 1.0; 3] ______________

[0.15; 1.97; 1.0; 3] ______________

[0.15; 1.95; 1.0; 3] ______________

[0.15; 1.93; 1.0; 3] ______________

[0.15; 1.91; 1.0; 3] ______________

[0.17; 2.0; 1.0; 3] ______________

[0.19; 2.0; 1.0; 3] ______________

[0.20; 2.0; 1.0; 3] ______________

[0.21; 2.0; 1.0; 3] ______________

You can see from the previous exercise that Newton can require a precise guess before it will converge.
Sometimes some iterate is not far from the ball of convergence, but the Newton step is so large that the next
iterate is ridiculous. In cases where the Newton step is too large, reducing the size of the step might make
it possible to get inside the ball of convergence, even with initial guesses far from the exact solution. This is
the strategy examined in the following section.

6 Softening (damping)

The exercise in the previous section suggests that Newton gets in trouble when its increment is too large.
One way to mitigate this problem is to “soften” or “dampen” the iteration by putting a fractional factor on
the iterate.

x(n+1) = x(k) − αJ(x(k))−1f(x(k)) (5)

where α is a number smaller than one. It should be clear from the convergence proofs you have seen for
Newton’s method that introducing the softening factor α destroys the quadratic convergence of the method.
This raises the question of stopping. In the current version of vnewton.m, you stop when norm(increment)

gets small enough, but if increment has been multiplied by alpha, then convergence could happen imme-
diately if alpha is very small. It is important to make sure norm(increment) is not multiplied by alpha

before the test is done.
Try softening in the following exercise.

Exercise 8:

(a) Starting from your vnewton.m file, copy it to a new file named snewton0.m (for “softened New-
ton”), change its signature to

function [x,numIts]=snewton0(f,x,maxIts)

and change it to conform with Equation (5) with the fixed value α = 1/2. Don’t forget to change
the comments and the convergence criterion. Matlab warning: The backslash operator does

7

not observe the “operator precedence” you might expect, so you need parentheses. For example,
3*2\4=0.6667, but 3*(2\4)=6!

(b) Returning to Exercise 7, to the nearest 0.01, how large can the first component of the initial guess
get before the iteration diverges? (Leave the other three values at their correct values.)

Softening by a constant factor can improve the initial behavior of the iterates, but it destroys the quadratic
convergence of the method. Further, it is hard to guess what the softening factor should be. There are tricks
to soften the iteration in such a way that when it starts to converge, the softening goes away (α → 1). One
such trick is to compute

∆x = −J(x(k))−1f(x(k))

α =
1

1 + β∥∆x∥
(6)

x(k+1) = x(k) + α∆x

where the value β = 10 is a conveniently chosen constant. You should be able to see how you might prove
that this softening strategy does not destroy the quadratic convergence rate, or, at least, allows a superlinear
rate.
Remark: Note that the expression in (6) is designed to keep the largest step below one tenth of the
Newton step. This is a very conservative strategy. Note also that another quantity could be placed in the
denominator, such as ∥f∥, so long as it becomes zero at the solution.

Exercise 9:

(a) Starting from your snewton0.m file, copy it to a new file named snewton1.m, change its signature
to

function [x,numIts]=snewton1(f,x,maxIts)

and change it so that α is not the constant 1/2, but is determined from Equation (6). Don’t
forget to change the comments.

(b) How many iterations are required to converge, starting from x(1)=0.20 and the other components
equal to their converged values? How many iterations were required by snewton0? You should
see that snewton1 has a slightly larger ball of convergence than snewton0, and converges much
faster.

(c) Using snewton1.m, to the nearest 0.01, how large can the first component of the initial guess get
before the iteration diverges? (Leave the other three values at their correct values.)

Another strategy is to choose α so that the objective function almost always decreases on each iteration.
This strategy can be useful when the the previous approach is too slow. One way to implement this strategy
is to add an additional loop inside the Newton iteration loop. Begin with a full Newton step, but check that
this step reduces the objective function. If it does not, halve the step size and try again. Keep halving the
step size until either the objective function is reduced or some fixed maximum number of halvings (e.g., ten)
have been tried. This can be written as an algorithm:

1. On Newton iteration k + 1, start with α = 1.

2. Compute a trial update:
x̃(ℓ) = x(k) − αJ(x(k))−1f(x(k))

3. If |f(x̃(ℓ))| ≤ |f(x(k))| or if α < 1/1024, then set x(k+1) = x̃(ℓ) and continue with the next Newton
iteration,
otherwise replace α with α/2 and return to Step 2.

8

The limit α < 1/1024 represents the (arbitrary) choice of a maximum of ten halvings.

Exercise 10:

(a) Starting from your snewton1.m file, copy it to a new file named snewton2.m, and employ the
strategy described above to repeatedly halve α until f(x) is reduced. If ten halving steps are
taken without reducing f , accept the smallest value of α and continue with the Newton iteration.
Remark: The above algorithm can be written either as a while loop inside a for loop or as two
for loops, one inside the other. Indentation should help you keep the loops organized.
Remark: Pay careful attention when writing this program! The value of α should start over at
α = 1 on each Newton iteration.

(b) Using snewton2.m, to the nearest 0.01, how large can the first component of the initial guess get
before the iteration diverges? (Leave the other three values at their correct values.)
Warning: You may find this strategy is not better than the previous one!

7 Continuation or homotopy methods

As can be seen in the previous few exercises, there are ways to improve the radius of convergence of Newton’s
method. For some problems, such as the curve-fitting problem above, they just don’t help enough. There is a
class of methods called continuation or homotopy methods (or Davidenko’s method, Ralston and Rabinowitz,
p. 363f) that can be used to find good initial guesses for Newton’s method. These methods do not appear
to be discussed in Quarteroni, Sacco, and Saleri. Some other references:

• http://www.math.uic.edu/%7ejan/srvart/node4.html

• An online article (apparently originally by Davidenko) and the references therein, https://www.encyclopediaofmath.org/index.php/Parameter, method of variation of the

and also https://www.encyclopediaofmath.org/index.php/Continuation method (to a parametrized family, for non-linear operators)

• Werner Rheinboldt, Methods for solving systems of nonlinear equations, Section 7.3, p84ff.

In the previous section, we were concerned with solving for the minimum value of an objective function
F (x). Suppose there is another, much simpler, objective function Φ(x), whose minimum is easy to find using
Newton’s method. One possible choice would be Φ(x) = ∥x − x0∥2, for some choice of x0. For 0 ≤ p ≤ 1,
consider the new objective function

G(x, p) = pF (x) + (1− p)Φ(x). (7)

When p = 0, G reduces to Φ and is easy to minimize (to a result that we already know) but when p = 1,
G is equal to F and its minimum is the desired minimum. All you need to do is minimize G(x, p) for the
sequence 0 = p1 < p2 < · · · < pn−1 < pn = 1 where you use the solution xk from parameter pk as the initial
guess for the pk+1 case. For properly chosen sequences, the result pk from step k will be within the radius
of convergence for the next step pk+1 and the final minimum will be the desired one. The trick is to find a
“properly chosen sequence,” and there is considerable mathematics involved in doing so. In this lab, we will
simply take a uniform sequence of values. This method can work quite nicely, as you see in the following
exercise.

Exercise 11:

(a) Suppose that x0 is a fixed four-dimensional vector and x is a four-dimensional variable. Define

Φ(x) =

4∑
k=1

(xk − (x0)k)
2.

9

Its gradient is

ϕk =
∂Φ

∂xk

and the Jacobian matrix is given by

Jk,ℓ =
∂ϕk

∂xℓ

The following code outline computes Φ and its derivatives in a manner similar to objective.m.

function [f,J,F]=easy_objective(x,x0)

% [f,J,F]=easy_objective(x-x0)

% more comments

% your name and the date

if norm(size(x)-size(x0)) ~= 0

error(’easy_objective: x and x0 must be compatible.’)

end

F=sum((x-x0).^2);

% f(k)=derivative of F with respect to x(k)

f=zeros(4,1);

f= ???

% J(k,ell)=derivative of f(k) with respect to x(ell)

J=diag([2,2,2,2]);

Copy it into a file named easy objective.m and complete the expression for the vector f.

Remark: The chosen value for x0 is problem-related and amounts to a vague approximation to
the final solution.

(b) What are the values of f, J and F for x0=[0;2;1;2] and x=[0;0;0;0] and also for x0=[0;2;1;2]
and x=[1;-1;1;-1]? You should be able to confirm that these values are correct by an easy
calculation.

(c) Use cut-and-paste to copy the following code to a file named homotopy.m, and complete the code.

function [f,J,F]=homotopy(x,p,x0)

% [f,J,F]=homotopy(x,p,x0)

% computes the homotopy or Davidenko objective function

% for 0<=p<=1

[f1,J1,F1]=objective(x);

[f2,J2,F2]=easy_objective(x,x0);

f=p*f1+(1-p)*f2;

J=???

F=???

(d) Place the following code into a Matlab script file named exer11.m.

x0=[0.24; 2; 1; 3];

x=ones(4,1);

STEPS=1000;

MAX_ITERS=100;

p=0;

% print out table headings

fprintf(’ p n x(1) x(2) x(3) x(4)\n’);

10

for k=0:STEPS

p=k/STEPS;

[x,n]=vnewton(@(xx) homotopy(xx,p,x0),x,MAX_ITERS);

% the fprintf statement is more sophisticated than disp

if n>3 || k==STEPS || mod(k,20)==0

fprintf(’%6.4f %2d %7.4f %7.4f %7.4f %7.4f\n’,p,n,x);

end

end

Try this code with x0=[0.24; 2; 1; 3]. Does it successfully reach the value p=1? Does it get
the same solution values for x as in Exercises 5,6,8 and 9?

(e) Explain what the expression

@(xx) homotopy(xx,p,x0)

means in the context of exer11.m. Why is this construct used instead of simply using @homotopy?

(f) Test x0=[.25;2;1;3]; in easy objective. Does the exer11 script successfully reach the value
p=1? To the nearest 0.05, how far can you increase the first component and still have it successfully
reach p=1?

(g) Success of the method depends strongly on the number of steps taken in moving from the simple
objective to the true objective. Change STEPS from 1000 to 750, thus increasing the size of the
steps. Starting from x0=[.25;2;1;3]; in easy objective, to the nearest 0.05, how far can you
increase the first component and still have it successfully reach p=1?

(h) Returning to STEPS=1000, can you start from x0=[0;2;1;3] and reach the solution? How about
x0=[-0.5;2;1;3]?

As you can see, the idea behind continuation methods is powerful. The best that could be done in
Exercise 10 is deviate from the exact answer by a few percent, while in Exercise 11 you more than tripled
the first component and still achieved a correct solution. Nonetheless, some care must be taken in choosing
x0 and STEPS. Nothing is free, however, and you probably noticed that 1000 steps takes a bit of time to
complete.

8 Quasi-Newton methods

The term “quasi-Newton” method basically means a Newton method using an approximate Jacobian instead
of an exact one. You saw in Lab 4 that approximating the Jacobian can result in a linear convergence rate
instead of the usual quadratic rate, so quasi-Newton methods can take more iterations than true Newton
methods will take. On the other hand, inverting an N × N matrix takes time proportional to N3, while
solving a matrix (after inverting it) takes time proportional to N2.

For very large linear systems, then, enough time could be saved by solving an approximate Jacobian sys-
tem to make up for the extra iterations required because true Newton converges faster. In the exercise below,
the inverse of the Jacobian matrix will be saved from iteration to iteration, and under proper circumstances,
re-used in later iterations because it is “close enough” to the inverse of the true Jacobian matrix.
Remark: You will see next semester that one almost never constructs the inverse of a matrix because
simply solving a linear system takes much less time than constructing the inverse and multiplying by it.
Furthermore, solving a linear system by a direct method involves constructing two matrices, one lower
triangular and one upper triangular. These two matrices can be solved efficiently, and the two matrices can
be saved and used again. In this lab, however, we will be constructing the inverse matrix and saving it for
future use because it is conceptually simpler.

11

One choice of nonlinear vector function can be given by the following expression for its components, for
k = 1, . . . , N ,

(f10(x))k = (dk + ε)xn
k −

N∑
j=k+1

xn
j

j2
−

k−1∑
j=1

xn
k−j

j2
− k

N(1 + k)

where n = 2, N = 3000, ϵ = 10−5 and

dk =
∑
j ̸=k

1

j2
.

Note that dk <
∑∞

k=1 1/k
2 = π2/6 = B1, the first Bernoulli number.

Exercise 12:

(a) Copy the following code to a function m-file f10.m and fill in values for the Jacobian matrix J by
taking derivatives “in your head” and using the resulting formulæ in place of ???.

function [f,J]=f10(x)

% [f,J]=f10(x)

% large function to test quasi-Newton methods

% your name and the date

[N,M]=size(x);

if M ~= 1

error([’f10: x must be a column vector’])

end

n=2;

f=zeros(N,1);

J=zeros(N,N);

for k=1:N

d=0;

for j=k+1:N

d=d+1/j^2;

f(k)=f(k) - x(j)^n/j^2;

% J(k,j)=df(k)/dx(j)

J(k,j)= ???

end

for j=1:k-1

d=d+1/j^2;

f(k)=f(k) - x(k-j)^n/j^2;

% J(k,k-j)=df(k)/dx(k-j)

J(k,k-j)= ???

end

f(k)=f(k) + (d+1.e-5)*x(k)^n - k/(1+k)/N;

% J(k,k)=df(k)/dx(k)

J(k,k)= ???

end

(b) It is extremely important for this exercise that the Jacobian matrix is correctly computed. The
terms in f10(x) are all quadratic in x, and for any quadratic function g(x),

dg

dx
=

g(x+∆x)− g(x−∆x)

2∆x

12

exactly for any reasonable value of ∆x.

Choose x = [1; 2; 3], ∆x = 0.1, and N = 3, use this formula to compute the nine derivatives

d(f10)k
dxj

, for k, j = 1, . . . , 3

Compare these nine values with the with the values in the Jacobian matrix. If they do not agree,
be sure to find your error.
Hint: You can do this in three steps by choosing the three column vectors ∆x = [0.1; 0; 0],
∆x = [0; 0.1; 0] and ∆x = [0; 0; 0.1],

You have seen that when your vnewton function is converging quadratically, the ratio r1 becomes small.
One way to improve speed might be to stop using the current Jacobian matrix when r1 is small, and just
use the previous one. If you save the inverse Jacobians from step to step, this can improve speed. In the
next exercise, you will construct a quasi-Newton method that does just this.

Exercise 13:

(a) Make a copy of your vnewton.m file called qnewton.m and change the signature to read

function [x,numIts]=qnewton(func,x,maxIts)

% [x,numIts]=qnewton(func,x,maxIts)

% more comments

% your name and the date

(b) Just before the start of the loop, initialize a variable

skip = false;

(c) Replace the two lines defining oldIncrement and increment with the following lines

if ~skip

tim=clock;

Jinv=inv(derivative);

inversionTime=etime(clock,tim);

else

inversionTime=0;

end

oldIncrement=increment;

increment = -Jinv*value;

(d) Add the following lines just after the computation of r1.

skip = r1 < 0.2;

fprintf(’it=%d, r1=%e, inversion time=%e.\n’,numIts,r1, ...

inversionTime)

Make sure there are no other print statements inside qnewton.m.

(e) In addition, make a copy of your completed qnewton.m to a new file qnewtonNoskip.m (or use
“save as”). Change the name inside the file, and replace The line

skip = r1 < 0.2;

with

skip = false;

13

This will give you a file for comparing times for true Newton against those for quasi-Newton.

(f) The following command both solves a moderately large system and gives the time it takes:

tic;[v,its]=qnewton(@(x) f10(x),linspace(1,10,3000)’);toc

How long does it take? How many iterations? How many iterations were skipped (took no time)?
What is the total time for inversion as a percentage of the total time taken?

(g) Repeat the same experiment but use qnewtonNoskip.

tic;[v0,its0]=qnewtonNoskip(@(x) f10(x),linspace(1,10,3000)’);toc

How long does it take? How many iterations? How far apart are the solutions (norm(v-v0)/norm(v)?

(h) For this case, which is faster (takes less total time) qnewton or qnewtonNoskip? Remark: On
my computer, qnewton is about 5 seconds faster. If you have a faster computer, you may observe
a smaller difference, or even that qnewton is slower. If so, you can try the same comparison with
N=4000 or larger.

Remark 1: As mentioned earlier, qnewtonNoskip is slower than vnewton because the inverse matrix is
constructed explicily. Instead of computing and saving Jinv, you could compute and save the factors of the
matrix. A version of qnewtonNoskip programmed this way would take about the same amount of time as
vnewton, and qnewton would be faster yet.
Remark 2: The choice skip = (r1 < 0.2) is very much problem-dependent. There are more reliable ways
of deciding when to skip inverting the Jacobian, but they are beyond the scope of this lab.
Remark 3: For large matrix systems, especially ones arising from partial differential equations, it is faster
to solve the system using iterative methods. In this case, there are two iterations: the nonlinear Newton
iteration and the linear solution iteration. For these sysems, it can be more efficient to stop the linear solution
iteration before full convergence is reached, saving the time for unnecessary iterations. This approach is also
called a “quasi-Newton method.”
Remark 4: When a sequence of similar problems is being solved, such as in Davidenko’s method or in time-
dependent partial differential equations, quasi-Newton methods can save considerable time in the solution
at each step because it is often true that the Jacobian changes relatively slowly.

9 Extra Credit: More on minimization (8 points)

In Section 5 above, you used an objective function that I provided for you. In this section, you will see how
a (simpler) objective function is generated.

Suppose you have experimental data that, based on physical grounds, you expect to behave as cet/τ ,
where c is a constant and τ a time constant. This would be the case, for example, if the quantity satisfies a
first-order differential equation. Given the experimental data the task is to find values for c and τ that best
fit the data.

Denoting the experimental data set as the pairs {(tn, vn)} for n = 1, . . . , N , then the objective function
can be written as

F (x) =

N∑
n=1

(vn − x1e
x2tn)2 (8)

and the task is to find that value of x = (x1, x2) that minimizes F . This objective function is similar to, but
simpler than, the one given above (3). Like that problem, it can be phrased as a linear problem (take logs),
but we will treat it as a nonlinear problem.

In the following exercise, you will construct a function m-file named extra.m, analogous to objective.m

that computes the function F in (8). Newton iteration applied to this objective function is sensitive to initial
guesses in much the same way that is discussed in Section 5.

Exercise 14:

14

(a) Begin extra.m with the signature

function [f,J,F]=extra(x)

and add appropriate comments.

(b) Construct 200 artificial data values for t between 0 and 1, and for v based on values v = cet/τ

with c = 1 and τ = 5.

(c) Construct the objective value F according to (8).

(d) Compute the derivatives f1 = ∂F/∂x1 and f2 = ∂F/∂x2. You should take these derivatives using
pencil and paper (or some computer algebra program such as Maple, Mathematica or the symbolic
toolbox in Matlab) and then write Matlab code in extra.m.

(e) Compute the Jacobian matrix (or Hessian matrix) by computing the partial derivatives Jk,ℓ =
∂fk/∂xℓ and writing Matlab code for them.

(f) Use your extra.m to compute f, J and F for x=[1;.2]. This should yield F = 0, f = 0.

(g) Check f using first order finite differences with ∆x1 = .001 and ∆x2 = .0001 in the following way.

i. Compute [fa,Ja,Fa]=extra([2;.3]).

ii. Compute [fb,Jb,Fb]=extra([2.001;.3]).

iii. Compute [fc,Jc,Fc]=extra([2;.3001]).

iv. (Fb-Fa)/.001 should approximate fa(1), and (Fc-Fa)/.0001 should approximate fa(2).

(h) Similarly, check that the finite difference approximations for the derivatives ∂fi/∂xj are in ap-
proximate agreement with the components of J.

(i) Double-check that at x = [1; .2], J a positive definite, symmetric (nonsingular) matrix.

(j) Check that vnewton can find the correct solution starting from the correct solution (x = [1; .2]).

(k) Show that vnewton requires fewer than 10 iterations to find the correct minimum starting from
[1;0.9] but that starting from [1;1.0] requires more than 100 iterations. (If you do not find
these vaues, your J is probably not correct. Repeat the finite difference checks with ∆x1/2 and
∆x2/2 and make sure the approximation error is roughly halved.)

Last change $Date: 2016/09/18 00:27:23 $

15

