
Lab 3: Implicit ODE methods
MATH2071, University of Pittsburgh, Spring 2023

1 Introduction

The explicit methods that we discussed last time are well suited to handling a large class of ODE’s. These
methods perform poorly, however, for a class of “stiff” problems that occur all too frequently in applications.
We will examine implicit methods that are suitable for such problems. We will find that the implementation
of an implicit method has a complication we didn’t see with the explicit method: a (possibly nonlinear)
equation needs to be solved.

The term “stiff” as applied to ODE’s does not have a precise definition. Loosely, it means that there
is a very wide range between the most rapid and least rapid (with x) changes in solution components. A
reasonably good rule of thumb is that if Runge-Kutta or Adams-Bashforth or other similar methods require
much smaller steps than you would expect, based on your expectations for the solution accuracy, then the
system is probably stiff. The term itself arose in the context of solution for the motion of a stiff spring when
it is being driven at a modest frequency of oscillation. The natural modes of the spring have relatively high
frequencies, and the ODE solver must be accurate enough to resolve these high frequencies, despite the low
driving frequency.

This lab will take three sessions.

2 Stiff Systems

I’ve warned you that there are problems that defeat the explicit Runge-Kutta and Adams-Bashforth methods.
In fact, for such problems, the higher order methods perform even more poorly than the low order methods.
These problems are called “stiff” ODE’s. We will only look at some very simple examples.

Consider the differential system

y′ = λ(−y + sinx)

y(0) = 0 (1)

whose solution is

y(x) = Ce−λx +
λ2 sinx− λ cosx

1 + λ2

= Ce−λx +
λ2

1 + λ2
sinx− λ

1 + λ2
cosx

for C a constant. For the initial condition y = 0 at x = 0, the constant C can easily be seen to be

C =
λ

1 + λ2

The ODE becomes stiff when λ gets large: at least λ = 10, but in practice the equivalent of λ might be a
million or more. One key to understanding stiffness of this system is to make the following observations.

� For large λ and except very near x = 0, the solution behaves as if it were approximately y(x) = sinx,
which has a derivative of modest size.

� Small deviations from the curve y(x) = sinx (because of initial conditions or numerical errors) cause
the solution to have large derivatives that depend on λ.

In other words, the interesting solution has modest derivative and should be easy to approximate, but nearby
solutions have large (depending on λ) derivatives and are hard to approximate. Again, this is characteristic
of stiff systems of ODEs.
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3 stiff ode()

As an example of a stiff ODE, we will consider the example problem

dy

dx
= λ(−y + sin(x))

where λ is a parameter whose value controls the stiffness of the ODE.
Create the corresponding file stiff ode.py:

def dydx = s t i f f o d e ( x , y ) :
”””
dydx = s t i f f o d e ( x , y ) r i g h t s i d e o f the s t i f f ODE

input :
x i s independent v a r i a b l e
y i s dependent v a r i a b l e

output :
dydx i s the va lue o f f ode ( x , y ) .

”””
import numpy as np
LAMBDA = 4.0
dydx = LAMBDA * ( − y + np . s i n ( x ) )
return dydx

4 stiff solution()

The solution to our stiff ODE is

y =
λ2

λ2 + 1
sin(x) +

λ

λ2 + 1
(e−λx − cos(x))

Add the following definition of stiff solution() to your file stiff ode.py:

def s t i f f s o l u t i o n ( x ) :
”””
y = s t i f f s o l u t i o n ( x ) , s o l u t i on o f the s t i f f ODE.

input :
x i s the independent v a r i a b l e

output :
y i s the s o l u t i on va lue

”””
import numpy as np
LAMBDA = 4.0
y = ( LAMBDA**2 / ( 1 + LAMBDA**2 ) ) * np . s i n (x ) + \

( LAMBDA / ( 1 + LAMBDA**2 ) ) * ( np . exp ( − LAMBDA * x ) − np . cos ( x ) )
return y

5 Exercise 1

1. Create a file exercise1.py for this exercise.

2. Use forward euler() from the previous lab to solve the stiff ODE, using y(0.0) = 0.0, and solve up
to x = 2π. Try using numSteps = 31.

3. Evaluate the exact solution at 101 evenly spaced points in [0.0, 2π].

4. Plot the ODE approximation and the exact solution. Presumably, these will be quite similar.
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6 Making it easy to vary LAMBDA

It turns out that the value of λ has an important influence on the approximate solution of the stiff ODE. In
order to investigate this, it will be convenient to be able to consider several values for the variable LAMBDA.
Of course one way to do this is simply to modify the lines LAMBDA=4.0 to the desired value as many times
as necessary.

Another way is to create a function which can set, reset, and remember the value of LAMBDA. That way,
a single program can run once, and choose LAMBDA to be 4, 55, and 1000 in succession. (These are the
values we will actually be interested in.) To do this requires writing an awfully mysterious function, but one
which is pretty easy to use. And we will have to modify the two functions in stiff ode.py to work with
this new idea.

To begin with, let’s update stiff ode.py. There are two places where the value of LAMBDA is set equal
to 4. Replace each of those lines by the following

LAMBDA = s t i f f l ambda ( )

Then we need to insert the code for stiff lambda() into the stiff ode.py file.

7 stiff lambda()

Add the following function definition to your file stiff ode.py:

def s t i f f l ambda ( lambda input = None ) :

i f not hasattr ( s t i f f l ambda , ” lambda defau l t ” ) :
s t i f f l ambda . lambda defau l t = 4 .0

i f ( lambda input i s not None ) :
s t i f f l ambda . lambda defau l t = lambda input

lambda output = s t i f f l ambda . lambda defau l t

return lambda output

You don’t need to understand how this function does its magic. But it means that you can easily change
the value of LAMBDA at any time, and all your codes will be able to find out what that new value is.

If you want to use stiff lambda() outside of the stiff ode.py file, then you have to import it:

from s t i f f o d e import s t i f f l ambda

The function starts out assuming that LAMBDA is 4.

To find out the current value of LAMBDA, you write

LAMBDA = s t i f f l ambda ( )

To change the current value of LAMBDA, you write

s t i f f l ambda ( LAMBDA )

To see whether you’ve set things up correctly, rerun exercise 1, after you issue the commands:

from s t i f f o d e import s t i f f l ambda
LAMBDA = 1.0
s t i f f l ambda ( LAMBDA )

Your plot of the exact and approximate solutions should have roughly the same shape as for LAMBDA = 4.0,
but now the maximum value will be much reduced.
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8 The direction field of an ODE

One way of looking at a differential equation is to plot its “direction field.” At any point (x, y), we can plot a
little arrow p equal to the slope of the solution at (x, y). This is effectively the direction that the differential
equation is “telling us to go,” sort of the “wind direction.” How can you find p? If the differential equation
is y′ = fode(x, y), and p represents y′, then p = (dx, dy), or p = h(1, fode(x, y)) for a sensibly-chosen value
h. There are built-in functions to generate this kind of plot.

The solution to our stiff ODE is roughly sinx. At every point (x, y(x)), the solution curve is tangent to
the value of the derivative function f(x, y(x)) = dy

dx . Basically, solving the ODE is equivalent to correctly
connecting the sequence of these tangent directions. How hard this task can be depends on the behavior of
the entire direction field, that is, the plot of f(x, y) for all values of (x, y), not just for the y(x) that satisfies
our ODE. This direction field not only tells us how to follow the solution curve. It also tells us the shape
of solution curves that have nearby initial values. It tells us what will happen if we make a small error,
and wind up on a nearby solution curve. And it suggests what will happen to an ODE solver that must
approximate the continuous solution by taking relatively large steps according to the direction field.

9 stiff direction()

Create a file stiff direction.py, and insert the following statements, which will allow you to plot the
direction field given an input value of LAMBDA:

def s t i f f d i r e c t i o n ( LAMBDA ) :

from s t i f f o d e import s t i f f o d e , s t i f f s o l u t i o n , s t i f f l ambda
import matp lo t l i b . pyplot as p l t
import numpy as np

#
# Define the va lue o f LAMBDA.
#

s t i f f l ambda ( LAMBDA )
#
# Sample dy/dx over [0 ,2 p i ] x [−1 ,+1]
#

x = np . l i n s p a c e ( 0 . 0 , 2 . 0 * np . pi , 16 )
y = np . l i n s p a c e ( −1.5 , +1.5 , 9 )
X, Y = np . meshgrid ( x , y )
PX = np . ones ( X. shape )
PY = s t i f f o d e ( X, Y )
s c a l e = 5 .0
p l t . qu ive r ( X, Y, PX, PY, s c a l e )

#
# Evaluate and p l o t the exac t s o l u t i on .
#

x2 = np . l i n s p a c e ( 0 . 0 , 2 . 0 * np . pi , 101 )
y2 = s t i f f s o l u t i o n ( x2 )
p l t . p l o t ( x2 , y2 , ’ r ’ )

p l t . g r i d ( True )
p l t . ax i s ( ’ equal ’ )
p l t . t i t l e ( ’ D i r e c t i on f i e l d f o r s t i f f ODE, LAMBDA = ’ + str ( LAMBDA ) )
p l t . s a v e f i g ( ” s t i f f d i r e c t i o n . jpg ” )
p l t . show ( )
p l t . c l o s e ( )

10 Exercise 2

1. Create a file exercise2.py for this experiment.
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2. Consider the sequence of values LAMBDA = 0.0, 1.0, 4.0, 50.0.

3. For each value of LAMBDA, simply call stiff direction() and study the direction field plot.

4. It is possible to write this exercise in 3 lines of code!

You can see that the solution curve (red) is following a sequence of direction arrows. However, as LAMBDA
increases, the behavior of the nearby direction vectors changes. When you reach LAMBDA = 4, no matter
where you start in the rectangle, you head very rapidly (long arrows) toward sinx, and then follow that
curve as it varies slowly (short arrows). At LAMBDA=50, the direction vectors seem to point directly up or
down, depending on which side of the solution curve they are.

Suppose that LAMBDA = 50, and we are solving the ODE with a new initial condition that is somewhere
above the red solution curve. The picture tells us that in order to follow this solution, we need to choose a
stepsize and move almost (but not exactly) downwards. The goal would be to come close to the red solution
curve. But if we pick a stepsize that is too large, we will instead hop over the curve to the “up” side of the
direction field. Our approximate solution may end up jumping back and forth, and maybe even growing in
size. This phenomenon of overshooting and explosive growth is a characteristic of stiff differential equations;
special ODE methods have been devised to try to deal with it.

11 Exercise 3

This exercise illustrates what is meant by stiffness of an ODE.
To begin with, let us estimate the work it ought to take to represent a solution of our stiff ODE. We

are going to set LAMDBA to 10,000 and then plot the exact solution function over the interval [0, 2π]. Our
question is, roughly now many evenly spaced x values do we need in order for the plot to look reasonable?

Your investigation might start out as follows, where you need to fill in the correct Python details:

some import statements
c a l l s t i f f l ambda to set LAMBDA
choose n
set x to n equa l l y spaced po in t s in [ 0 , 2 p i ]
set y to the s o l u t i o n o f the s t i f f ODE
p lo t x and y

You should probably find that 40 points is about enough to show what the curve looks like.
Based on the plot, we might assume that we can compute a good approximation to the stiff ODE solution

by using 40 equal steps in our ODE solver. Let’s see what happens when we try this.

1. Create a file exercise3.py for this experiment.

2. Use forward euler.py from the last lab.

3. Solve the stiff ODE, with LAMBDA set to 10,000, over the interval [0,2pi], with initial condition y(0) =
0, using numSteps = 40. Plot your results in red, and the exact solution in blue. Your results will be
terrible.

4. Until you get reasonable results, multiply numSteps by 10 and try again.

5. Report the value of numSteps that you had to use in order to get an approximate solution whose plot
looks close to the exact solution.

Our earlier plotting investigation suggested that the curve wasn’t hard to draw, but our ODE solution
efforts showed that the curve is actually very hard to follow!
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12 The Backward Euler Method

The Backward Euler method is an important variation of Euler’s method. Before we say anything more
about it, let’s take a hard look at the algorithm:

xk+1 = xk + h

yk+1 = yk + hfode(xk+1, yk+1) (2)

You might think there is no difference between this method and Euler’s method. But look carefully–this
is not a “recipe,” the way some formulas are. Since yk+1 appears both on the left side and the right side,
it is an equation that must be solved for yk+1, i.e., the equation defining yk+1 is implicit. It turns out that
implicit methods are much better suited to stiff ODE’s than explicit methods.

If we plan to use Backward Euler to solve our stiff ode equation, we need to address the method of
solution of the implicit equation that arises. Before addressing this issue in general, we can treat the special
case:

xk+1 = xk + h

yk+1 = yk + hλ(−yk+1 + sinxk+1) (3)

This equation can be solved for yk+1 easily enough! The solution is

xk+1 = xk + h

yk+1 = (yk + hλ sinxk+1)/(1 + hλ)

Now we will write a version of the backward Euler method that implements this solution, and only this
solution. Later, we will look at more general cases.

13 back euler lam()

Create a file back euler lam.py with the signature:

def back eu l e r l am ( LAMBDA, xRange , y I n i t i a l , numSteps )

import numpy as np

x = np . z e r o s ( numSteps + 1 )
y = np . z e r o s ( ( numSteps + 1 , np . s i z e ( y I n i t i a l ) ) )

dx = ( xRange [ 1 ] − xRange [ 0 ] ) / numSteps

for k in range ( 0 , numSteps + 1 ) :

i f ( k == 0 ) :
x [ 0 ] = xRange [ 0 ]
y [ 0 , : ] = y I n i t i a l

else :
x [ k ] = x [ k−1] + dx
y [ k , : ] = ???

return x , y

14 Exercise 4

Now let’s try again to solve our very stiff ODE, using the backward Euler method.
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1. Create a file exercise4.py for this experiment.

2. Solving the system (??) with λ = 10000 over the interval [0, 2π], starting from the initial condition
y = 0 at x=0 for 40 steps. Your solution should not blow up and its plot should look reasonable.

3. For the purpose of checking your work, the first few values of y are y=[ 0.0; 0.156334939127; 0.308919855800;
0.453898203657; ...]. Did you get these values?

Now we will compare backward Euler with forward Euler for accuracy. Of course, backward Euler gives
results when the stepsize is large and Euler does not, but we are curious about the case that there are enough
steps to get answers. Because it would require too many steps to run this test with λ =1.e4, you will be
using λ =55.

15 Exercise 5

Now we will investigate the accuracy of the forward Euler method when applied to our stiff ODE. For this
experiment, we will use a smaller value of LAMBDA, and we will focus only on the value we compute at the
endpoint x = 2π. We want to see how the error in this quantity is reduced as we increase numSteps.

1. Create a file called exercise5.py for this experiment.

2. Use stiff lambda() to set LAMBDA to 55.

3. Compute yexact = stiff ode ( 2.0 * np.pi );

4. Let numSteps = np.array ( [ 40, 80, 160, 320, 640, 1280, 2560] );

5. For each k, solve the stiff ODE with forward euler(), using numSteps[k].

6. For each k, Compute the final error e[k] = y[numSteps[k]] - yexact.

7. For all but the last k, compute r[k] = e[k] / e[k+1].

8. Based on the ratios in the table, estimate the order of accuracy of the method, i.e., estimate the
exponent p in the error estimate Chp. p is an integer in this case.

Although the results are very bad for the first few calculations, they should settle down.

16 Exercise 6

Now let’s compare the backward Euler method.

1. Create a file called exercise6.py for this experiment.

2. Repeat the previous exercise, but now use back euler lam().

Comment on the orders of accuracy of the forward and backward Euler methods.

17 Solving a nonlinear equation

You should be convinced that implicit methods are worth while. How, then, can the resulting implicit
equation (usually it is nonlinear) be solved? We could build a backward Euler solver that applies Newton’s
method. This would require computing and supplying the partial derivative of fode with respect to y, and
accessing a Newton nonlinear equation solver (which we did in an earlier lab).

However, there are already powerful tools available to us, in particular the function ttscipy.optimize.fsolve(),
which can find the root of a nonlinear equation of the form f(x) = 0. All we have to do is supply x0, an
initial guess for the root, and issue the command

from s c ipy . opt imize import f s o l v e
x = f s o l v e ( f , x0 )
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Our particular problem is a little more complicated. We need to explain to fsolve() that our problem
doesn’t have the simple form f(x)=0. Starting from the implicit equation

y [ k ] = y [ k−1] + ( x [ k ] − x [ k−1] ) * f ( x [ k ] , y [ k ] )

we can think of our Backward Euler Function (bef) as

be f = y [ k ] − y [ k−1] − ( x [ k ] − x [ k−1] ) * f ( x [ k ] , y [ k ] )

and we need to ask fsolve() to find a y[k] that makes this zero.

Our bef() function has extra arguments, but here’s how we call fsolve() with that extra information
included:

y [ k , : ] = f s o l v e ( bef , y [ k , : ] , a rgs = ( f ode , x [ k−1] , y [ k−1 , : ] , x [ k ] ) )

Read this carefully. We are asking fsolve() to solve bef=0 for a value y[k,:], assuming that the ODE
right hand side is f ode(), the old data is x[k-1], y[k-1,:] and the new value of x is x[k].

You don’t need to worry about how I figured out this crazy formula, but you do need to understand what
it is asking!

This means that, essentially, to get the backward Euler solver, we replace just one line in the forward
Euler code, and add a function to evaluate bef.

18 back euler()

1. Create back euler.py by copying forward euler.py.

2. Insert the statement from scipy.optimize import fsolve;

3. Replace the line defining y[k,:] = by the line that calls fsolve.

4. Append the following definition of bef() into your code:

def be f ( yp , f , to , yo , tp ) :
va lue = yp − yo − ( tp − to ) * f ( tp , yp ) ;
return value

Test back euler() on a simple version of the stiff ODE, by setting LAMBDA to 1, just to make sure it
is working. We will give it a tougher test in the next exercise.

19 Exercise 7

1. Create a file called exercise7.py for this experiment.

2. Use back euler lam() to solve the stiff ODE, with LAMBDA = 10000, on the interval [0, 2π], with initial
value 0, for 40 steps, and save your solution as y1[];

3. Use back euler() to solve the same system, and save your solution as y2[];

4. Print x[k], y1[k], y2[k] for 0 ≤ k < numSteps+ 1. The two solutions should agree to ten or more
significant digits.

Assuming your solutions agree, we can expect that back euler() is working properly.
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20 van der Pol’s equation

One simple nonlinear equation with quite complicated behavior is van der Pol’s equation. This equation is
written

z′′ + ν(z2 − 1)z′ + z = e−x

where e−x has been chosen as a forcing term that dies out as x gets large. When z > 1, this equation behaves
somewhat as an oscillator with negative feedback (“damped” or “stable”), but when z is small then it looks
like an oscillator with positive feedback (“negatively damped” or “positive feedback” or “unstable”). When
z is small, it grows. When z is large, it dies off. The result is a non-linear oscillator. Physical systems that
behave somewhat as a van der Pol oscillator include electrical circuits with semiconductor devices such as
tunnel diodes in them and some biological systems, such as the beating of a heart, or the firing of neurons.
In fact, van der Pol’s original paper was, “The Heartbeat considered as a Relaxation oscillation, and an
Electrical Model of the Heart,” Balth. van der Pol and J van der Mark, Phil. Mag. Suppl. 6(1928) pp
763—775. More information is available in an interesting Scholarpedia article.

As you know, van der Pol’s equation can be written as a system of first-order ODEs in the following way.

y′1 = f1(x, y1, y2) = y2

y′2 = f2(x, y1, y2) = −ν(y21 − 1)y2 − y1 + e−x (4)

where z = y1 and z′ = y2 and ν is a parameter.

21 vanderpol ode()

The van der Pol equation is a good test for our backward Euler ODE solver; it is a system rather than a
single equation, it’s stiff, and it’s a nonlinear ODE, which means that, unlike with the case of our “stiff ode”,
we cannot rearrange the algorithm to make it a simple explicit formula for the next values.

Like our stiff ODE, the van der Pol equation includes a parameter ν. We will assign this quantity a
default value of 11.0 initially, but later we may want to vary it. For that reason, we will want to write a
function vanderpol nu() that allows us to easily set or get this parameter value.

Create a file vanderpol ode.py, and start out by implementing the right hand side (which will be a
vector this time) in the usual way. The signature will be:

def vanderpo l ode ( x , y ) :

NU = vanderpol nu ( )
fValue = np . z e r o s ( 2 )
fValue [ 0 ] = ???
fValue [ 1 ] = ???
return fValue

Replace the question marks by the appropriate formulas. Then append the following function definition
to allow us to set or get the current value of NU also known as ν.

def vanderpol nu ( nu input = None ) :

i f ( not hasattr ( vanderpol nu , ” nu de f au l t ” ) ) :
vanderpol nu . nu de f au l t = 11 .0

i f ( nu input i s not None ) :
vanderpol nu . nu de f au l t = nu input

nu output = vanderpol nu . nu de f au l t

return nu output

You could prepare for a test run of your code with the commands:
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from vanderpo l ode import vanderpol ode , vanderpol nu
NU = 11.0 # Choose a va lue f o r NU
vanderpol nu ( NU ) # Not i fy a l l codes o f the va lue o f NU

then set the appropriate input and call forward euler or back euler() and plot the results. We will try this
in the next exercise.

22 Exercise 8

1. Create a file called exercise8.py for this experiment.

2. Set NU to 11.

3. Using forward euler(), solve the van der Pol system over the interval from x=0 to x=2, starting from
y=[0;0] and using 40 steps. Save the solution values as x1, y1.

4. Using the same data, solve the system with back euler(). Save the solution values as x2, y2.

5. Show both solutions on one plot. You should see that they don’t agree, and that the solution produced
by forward euler() seems less likely to be correct.

You may be interested to see what happens if you rerun your program with a larger value of NU. Even
for a value of NU=12, the forward Euler code will deteriorate, and for larger values, the solution is worthless
unless we increase the number of steps.

23 The Midpoint Method

The implicit midpoint method for solving an ODE tries to improve the accuracy of the predicted value yk.
It does this by using a backward Euler approximation with a half step in x, producing the pair (xm,ym).
We initialize this process by:

xm = xk−1 + dx/2

ym = yk−1 + dx/2 f(xk−1, yk−1) (starting estimate for ym)

and then we call fsolve() to solve the implicit equation.

ym = yk−1 + dx/2 f(xm, ym) Implicit equation! Need to call fsolve()

Previously, in back euler(), the call to fsolve() looked like this:

y [ k , : ] = f s o l v e ( bef , y [ k , : ] , a rgs = ( f ode , x [ k−1] , y [ k−1 , : ] , x [ k ] ) )

We will have to modify the call to fsolve(), so that the values of xm and ym replace the occurrence of x[k]
and the 2 occurrences of y[k,:].

Once we have computed ym, then yk is approximated by

yk = 2 ym− yk−1

Compare to the backward Euler method, the midpoint method seems to involve a bit more work, so we
can hope that there will be some improvement in performance!

24 midpoint()

1. Create midpoint.py by copying back euler.py.

2. Before the call to fsolve(), insert the two lines that define xm and initialize the estimate for ym:
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xm = x [ k−1] + ?
ym = y [ k−1 , : ] + ?

3. Modify the call to fsolve() so that it uses xm and ym in place of x[k-1] and y[k-1,:];

4. As suggested above, write the formula that evaluates y[k,:] based on y[k-1,:] and ym

y [ k , : ] = ?

Test midpoint() on a simple version of the stiff ODE, by setting LAMBDA to 1, just to make sure it is
working. We will give it a tougher test in the next exercise.

25 Exercise 9

To make sure that your midpoint rule has been implemented correctly, let’s try it out on the same problem
we looked at in exercise 8.

1. Create a file called exercise9.py for this experiment.

2. Set NU to 11.

3. Using midpoint(), solve the van der Pol system over the interval from x=0 to x=2, starting from
y=[0;0] and using 40 steps.

4. Plot the solution.

How does your plot compare to the results from exercise 8?

26 Exercise 10

In exercises 5 and 6, you ran forward euler and back euler lam on the stiff ODE, for an increasing sequence
of number of steps. This allowed you to compute the error, and then observe the error ratios, which suggested
the rate of convergence of the method. We will now try this same test for the midpoint method. You might
save some time by starting from a copy of exercise5.py

1. Create a file called exercise10.py for this experiment.

2. Use stiff lambda() to set LAMBDA to 55.

3. Compute yexact = stiff ode ( 2.0 * np.pi );

4. Let numSteps = np.array ( [ 40, 80, 160, 320, 640, 1280, 2560] );

5. For each k, solve the stiff ODE with midpoint(), using numSteps[k].

6. For each k, Compute the final errore[k] = y[numSteps[k]] - yexact.

7. For all but the last k, compute r[k] = e[k] / e[k+1].

8. Based on the ratios in the table, estimate the order of accuracy of the method, the exponent p in the
error estimate Chp. p is an integer in this case.
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