
Chapter 3

Numerical Differentiation,
Interpolation, and Integration

Instructor: Dr. Ming Ye

Measuring Flow in Natural Channels

Mean-Section Method

(1) Divide the stream into a number of rectangular elements
(2) Use current meter to measure speed of the flow in each

rectangular. The velocity is approximately the average velocity
for that rectangular.

(3) Multiply the average velocity by the area of the rectangular.
(4) Sum across the stream.
(5) Divide the sum by total area of the cross-section.

Outline of This Chapter
• If the function is smooth, analytically known, and

can be evaluated anywhere
– Finite difference with Taylor series expansion

• If only certain function values of the function are
known
– Interpolation (if the values are sufficiently smooth) or

curve fitting (if the values are noisy)
– Numerical differentiation: a computer program

consists of basic arithmetic operations and elementary
functions, each of whose derivatives is easily
computed.

• Numerical integration
• MATLAB functions

• If all the 21 data points were fit exactly by a polynomial of degree 20, then the
derivative of that polynomial would be quite erratic, changing sign many times, and
moreover the derivative would be highly sensitive to small change in the data.

• In sharp contrast, the derivative of the approximating quadratic polynomial is well
behaved and relatively insensitive to change in the data.

Determine the Manning’s
Coefficient and Estimate Discharge

• Once we know mean velocity,
slope, and depth (or hydraulic
radius), we can determine the
value of Manning's n using
Manning's equation.

• Once we know the value of
Manning's n, we can use the
Manning's equation to estimate
stream velocity and discharge, when
direct hydraulic measurements are
absent.

Finite Difference
Mathematical definition of a derivative

In numerical differentiation, instead of
taking the limit as Δx approaches zero,
Δx is allowed to have some small but
finite value.

Pick a small value Δx; evaluate f(x+Δx); you probably have
f(x) already evaluated, but if not, do it too; finally apply the
equation.

Approximation Error

• Thought of geometrically, this estimate of a
derivative is the slope of a linear approximation
to the function f over the interval Δx.

• Applied uncritically, the above procedure is
almost guaranteed to produce inaccurate
results.

• How well a linear approximation works depends
on the shape of the function f and the size of the
interval Δ x.

• Truncation error and roundoff error

Truncation Error:
Taylor Series Approach

Taylor series expansion

The remainder

Truncation Error of Approximating f’

Forward difference

Backward difference

Central Difference Approximation

The higher order approximation yield a
more accurate estimate of the derivative,
but

Subtracting these leaves

• Computational cost is higher.
• Not applicable at the domain boundaries where a forward or backward

estimate is necessary.

Higher-order Derivatives

Add the two terms

2 3
' '' ''' 4

2 3
' '' ''' 4

() ()
() () () () () (())

2 6

() ()
() () () () () (())

2 6

x x
f x x f x xf x f x f x O x

x x
f x x f x xf x f x f x O x

         

         

2 '' 4

'' 2
2

() () 2 () () () (())

() 2 () ()
() (())

()

f x x f x x f x x f x O x

f x x f x f x x
f x O x

x

         
       



Can you get this from finite difference?

Interpolation
• Using Taylor series expansions to derive finite difference

formulas becomes increasingly cumbersome for
approximations of increasingly high accuracy or higher-order
derivatives.

• We next consider an alternative method based on polynomial
interpolation that is not only more convenient but will also more
readily permit generalization such as using unequally spaced
points.

• Interpolation is an important part of many numerical methods.

• Interpolating polynomials are the building blocks of many other
numerical methods such as numerical integration and finite
element.

Interpolation
Interpolation is concerned with the use of interpolation to
approximate a function that is defined by a table of data.

Viscosity at temperature of
22oC?
• 1.319: Linear interpolation

using the viscosity values
of 20 and 30 oC

• 1.203: Quadratic
interpolation using more
data

• The difference is about
10%.

Plot of viscosity of glycerin at different
temperatures.

Polynomials

Polynomials are used to construct
interpolating functions in two primary ways:

• The degree of the polynomial is increased
to match greater number of points from the
discrete data set.

• An interpolating function is created by
assembling a set of low degree
polynomials defined over subintervals of
the domain.

Interpolation

We will cover the following topics
• Basic ideas
• Interpolating polynomials of arbitrary degree

– Monomial basis
– Lagrange basis
– Newton basis

• Piecewise polynomial interpolation
– Linear
– Hermite polynomials
– Cubic splines

• MATLAB’s built-in interpolation routines

Basic Ideas
• In the one-dimensional case, a finite set of data (xi,yi), i=1,

…,n is given as discrete samples of some known or
hard-to-evaluation function y=f(x).

• Interpolation involves constructing and then evaluating an
interpolation function, or interpolant, y=F(x) at values of x
that may or may not be in the (xi,yi) data set.

• The interpolation function F(x) is determined by requiring
that it pass through the known data (xi,yi).

• When x≠xi, the F(x) should also be a good approximation to
f(x), which created the tabular data in the first place.

• f(x) may be analytically unknown; the (xi,yi) data represent
the input and output values of n measurements.

• f(x) may be analytically known but difficult and tedious to
evaluate, especially by manual calculations or computer
memory is limited.

Basic Ideas
• In its most general form, interpolation involves

determining the coefficients, a1, a2,… an in the
linear combination of n basis functions, Φ(x),
that constitute the interpolant

F(x)= a1Φ1(x)+a2Φ2(x)+…+anΦn(x)

such that F(xi)=yi for i=1,…,n.

• The basis function may be polynomial

F(x)= a1+a2x+a3x2+…+anxn-1

or trigonometric

 F(x)= a1+a2eix+a3e2ix+…+ane(n-1)ix

Interpolation versus Curve Fitting

• Interpolation
– The interpolation function passes exactly through each of the known

points.
– It assume that the data have no uncertainty.

• Curve fitting
– The approximating function passes near the data points, but

(usually) not exactly through them.
– Data uncertainty is recognized.

Interpolation and Extrapolation

• Interpolation involves the construction and
evaluation of an approximating function within the
range of the independent variable of the given data
set.

• Extrapolation is the evaluation of the interpolating
function outside the range of the given independent
variable.

Extrapolation to Predict the Future

The extrapolated
values at the first
year after the
known data are
similar, but the
values at the fifth
year are
dramatically
different.

Four interpolating functions

Interpolating Polynomials of
Arbitrary Degrees

• A set of n data points may be interpolated with
polynomials of up to degree n-1.

• Although the algorithms covered allow
construction of polynomials with any n, in
practice, only polynomials of low degree, say,
less than 5, are useful.

• As n increases, the value of the interpolant
between the data points takes on values that may
deviate significantly from the nearby known data
point. This is the problem of data wiggle.

Monomial Basis
• Polynomial interpolation involves finding the equation

Pn-1(x), the unique polynomial of degree n-1 that passes
through n known data pairs, or supporting points.

1
1 1 2() ... n

n nP x a a x a x 
    

• The common representation of a polynomial of degree
n-1 is defined in terms of a set of monomial basis
functions, x0,x1, …, xn-1.

• Although the monomials uses a familiar and compact
notations, the polynomials can be written in other formats.

• Consider the shifted polynomial with a known offset
1

1 1 2() () ... ()n
n nP x b b x b x   

       
• With appropriate definitions of the coefficients, b, the

two polynomials can be the same.

Vandermonde Systems
• The built-in MATLAB routines for evaluating polynomials require

that the polynomial be written in decreasing powers of x

1 2
1 1 2 1() ...n n

n n nP x c x c x c x c 
     

• Consider the construction of a quadratic interpolation function that
passes through the (x,y) support points (-2,-2), (-1,1), and (2,-1).

2
2 1 2 3

2
1 2 3

2
1 2 3

2
1 2 3

()

2 (2) (2)

1 (1) (1)

1 (2) (2)

P x c x c x c

c c c

c c c

c c c

  

     

    

   

1

2

3

4 2 1 2

1 1 1 1

4 2 1 1

c

c

c

      
           
          

Vandermonde Systems
• For an arbitrary set of three points (x1,y1),

(x2,y2), and (x3,y3), the matrix equation is
2
1 1 1 1
2
2 2 2 2
2
3 3 3 3

1

1

1

x x c y

x x c y

x x c y

     
          
         

• The coefficient matrix on the left-hand side is called
a vandermonde matrix.

• Build the matrix in two ways:

>>x = [-2 -1 2]’;

>>A = [x.^2 x ones(size(x))]; Manually

>>A = vander([-2 -1 2]’); MATLAB built-in function

Exercise

Interpolate the fictitious gasoline price (cents) data below

Year 1986 1988 1990 1992 1994 1996

Price 133.5 132.2 138.7 141.5 137.6 144.2

• Plot the data and the interpolation function.
• What problem do you observe?
• Why does the problem occur?
• How to solve the problem?

Lagrange Basis
In a monomial basis the linear interpolating polynomial through
(x1,y1) and (x2,y2) is

1 1 2()P x c x c 

2 1
1

2 1

y y
c

x x




1 2 2 1
2

2 1

y x y x
c

x x




2 1
1 1 2

1 2 2 1

()
x x x x

P x y y
x x x x

  
 

where the two coefficient are

Substituting the coefficients into P1 and rearranging gives

This expresses the linear interpolating polynomial in terms of
a new pair of basis functions L1(x) and L2(x). They are the
first-degree Lagrange interpolating polynomials.

How to obtain these coefficients?

1 1 1 2 2() () ()P x y L x y L x 

Lagrange Basis
2 1

1 1 2
1 2 2 1

()
x x x x

P x y y
x x x x

  
  1 1 1 2 2() () ()P x y L x y L x 

2
1

1 2

()
x x

L x
x x




1
2

2 1

()
x x

L x
x x




If x=xi is a supporting point, then

1 if
()

0 if j i ij

i j
L x

i j



   

where δij is the kronecker delta.

Quadratic Interpolating Polynomial

Quadratic interpolating polynomial using a Lagrange
basis and passing through three points, (x1,y1),
(x2,y2), and (x3,y3), is

2 1 1 2 2 3 3() () () ()P x y L x y L x y L x  

2 3
1

1 2 1 3

()()
()

()()

x x x x
L x

x x x x

 
 

1 3
2

2 1 2 3

()()
()

()()

x x x x
L x

x x x x

 
 

1 2
3

3 1 3 2

()()
()

()()

x x x x
L x

x x x x

 
 

The polynomial of degree n-1 in a Lagrange basis is

1 1 1 2 2
1

() () () () ()
n

n n n j j
j

P x y L x y L x y L x y L x


     K

1

()
n

k
j

k j k
k j

x x
L x

x x





Create a figure using MATLAB

Lagrange vs. Monomial Polynomials

Lagrange polynomials have two important
advantages over interpolating polynomials
expressed in a monomial basis:
• The coefficients of the Lagrange basis are
known without solving a system of
equations.
• The evaluation of the Lagrange
polynomials is much less susceptible to
roundoff error.

Interpolating Polynomials Are Unique

• There is only one polynomial of degree n-1 passing
through n support points.

• The uniqueness of polynomials means that the
polynomial of degree n-1 passing the n points must
be the same whether it is expressed in a monomial
basis or a Lagrange basis or any other polynomial
basis.

• The coefficients of the individual basis functions will
be different, but the values produced by the two
polynomial expressions will be identical in exact
arithmetic. However, the results in floating-point
arithmetic will be different.

Differentiation using Interpolating Polynomial
• If Pn(x) is a good approximation to f(x) over some

range of x, then Pn’(x) should approximate f’(x) in
that range.

• For i=1,…,n-1, the polynomial of degree one
interpolating the two points, (xi,yi) and (xi+1,yi+1)
(h=xi+1-xi), is given by the Lagrange interpolant

1 1
1 1 1

1 1

() i i i i
i i i i

i i i i

x x x x x x x x
P x y y y y

x x x x h h
 

 
 

      
  

• Differentiating this polynomial with respect to x gives

After taking x=xi, it is the same as the first-order, forward
difference formula for the first derivative that we derived
earlier using Taylor series.

' 1
1 () i iy y

P x
h

 

Exercise

Extend the derivation in the previous slide for

•the central different of the first-order derivative

•the second order derivative

using the three data points: (xi-1,yi-1), (xi,yi), and
(xi+1,yi+1) and assuming that the discretization
space is equal, i.e.,

h=xi+1-xi=xi-xi-1.

Unequally Spaced Data

Take the derivative with respect to x

2 1 1 1 1

1 1 1 1
1 1

1 1 1 1 1 1 1 1

() () () ()

()() ()() ()()

()() ()() ()()

i i i i i i

i i i i i i
i i i

i i i i i i i i i i i i

P x y L x y L x y L x

x x x x x x x x x x x x
y y y

x x x x x x x x x x x x

   

   
 

       

  
       
     

'
2

1 1 1 1
1 1

1 1 1 1 1 1 1 1

()

() () () () () ()

()() ()() ()()
i i i i i i

i i i
i i i i i i i i i i i i

P x

x x x x x x x x x x x x
y y y

x x x x x x x x x x x x
   

 
       

          
     

'
2

1 1 1 1
1 1

1 1 1 1 1 1 1 1

()

() () () ()

()() ()() ()()

i

i i i i i i i i
i i i

i i i i i i i i i i i i

P x

x x x x x x x x
y y y

x x x x x x x x x x x x
   

 
       

      
     

Evaluate the derivative at xi

Implementation

Given a value of x, the numerator of each Lj contains

1

1 1 1

()
jn n

k k k
j

k k k jj k j k j k
k j

x x x x x x
L x

x x x x x x



   


                  
  

1 1 1 2 2
1

() () () () ()
n

n n n j j
j

P x y L x y L x y L x y L x


     K

1 2 1 1()() ()() ()j j nx x x x x x x x x x     L L
Because these terms are repeated in each of the Lj, it makes sense to compute the difference between x and xk once and store them.

>>xi = …; %equivalent to x

>>x = …; %equivalent to xk

>>dxi = xi –x; %equivalent to x-xk

>>num = prod(dxi(1:j-1))*prod(dxi(j+1:n)); %prod is a built-in function

The denominator can be constructed the same way, but wait

1

1 1 1

()
jn n

k k k
j

k k k jj k j k j k
k j

x x x x x x
L x

x x x x x x



   


                  
  

1 2 1 3 1 4 1

2 1 2 3 2 4 2

3 1 3 2 3 4 3

1 1 1 2 1 3 1

1 2 3 1

() () () ()

() () () ()

() () () ()

() () () ()

() () () ()

n

n

n

n n n n n

n n n n n

x x x x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x
   



    
     
    
 
 
    
 

     

L

L

L

L L L L L L

L

L

• We need to store a matrix (at least a triangle matrix) instead of a matrix.
The memory cost may be high.

• The cost of computing each term (not storing them) is just a factor of two
of the minimum cost.

>>den = prod(x(j)-x(1:j-1))*prod(x(j)-x(j+1:n));

Exercise

• Write a MATLAB code to interpret the gas
price of the previous exercise.

Polynomial Interpolation with a Newton Basis

• The Newton form of an interpolating polynomial
of degree n is

1 2 1 3 1 2 1 1 2() () ()() ()() ()n n nP x c c x x c x x x x c x x x x x x          K K

• The Newton bases are 1, (x-x1), (x-x1)(x-x2),

(x-x1)(x-x2)(x-x3), …

• The coefficients are found by requiring Pn(xi)=yi.

• Although these basis functions may initially seem cumbersome, it turns
out that the Newton form is more computationally efficient than
interpolating polynomials written in monomial or Lagrange basis.

• The Newton form has good numerical properties, and it is very useful for
theoretical analysis of interpolation schemes and numerical integration
methods.

Divided-Difference Notation

• The Newton form is more computationally
efficient than interpolating polynomials
written in monomial or Lagrange bases.

• Determining the coefficients, ci, is made
easier with the introduction of
divided-difference notation.

• Start with the quadratic interpolating
polynomial, and then extend it to the cubic
one. The general form is given at last.

Quadratic Polynomial in
Newton Form

Consider a quadratic polynomial passing three points
expressed in terms of the Newton basis function

2 1 2 1 3 1 2() () ()()P x c c x x c x x x x     

Applying the three constraints gives

2 1 1 1

2 2 1 2 2 1 2

2 3 1 2 3 1 3 3 1 3 2 3

()

() ()

() () ()()

P x c y

P x c c x x y

P x c c x x c x x x x y

 
   
      

1 1

2 1 2 2

3 1 3 1 3 2 3 3

1 0 0

1 () 0

1 () ()()

c y

x x c y

x x x x x x c y

     
           
            

or in the matrix form

You can solve it using
the forward substitution.

• The coefficients, ci, are given by compact
formulas called divided differences.

• c1=y1. To solve for c2 and c3, subtracting the first
row from the second and third rows and then the
new second row from the new third row leads to

1 1

2 1 2 2 1

3 2 3 1 3 2 3 3 2

1 0 0

0 () 0

0 () ()()

c y

x x c y y

x x x x x x c y y

     
            
             

• Normalizing the
second column by
dividing the second
row by x2-x1 and
dividing the third
row by x3-x2 gives

1
1

2 1
2

2 1
3 1 3

3 2

3 2

1 0 0

0 1 0

0 1 ()

y
c

y y
c

x x
x x c

y y

x x

 
 
                         
 

 

First-order divided differences

1
1 1

2 1
2 1 2

2 1
3 1 3 2 3

3 2

3 2

1 0 0

0 1 0 [,]

0 1 () [,]

y
c y

y y
c f x x

x x
x x c f x x

y y

x x

 
 
                               
 

 

2 1
1 2

2 1

3 2
2 3

3 2

[,]

[,]

y y
f x x

x x

y y
f x x

x x






[,] j i
i j

j i

y y
f x x

x x






In general, the first-order divided difference involving
the ordered pairs (xi,yi) and (xj,yj) is

Subtract the second row from the third row to get

1 1

2 1 2

3 1 3 2 3

1 0 0

0 1 0 [,]

0 1 () [,]

c y

c f x x

x x c f x x

     
          
          

1 1

2 1 2

3 1 3 2 3 1 2

1 0 0

0 1 0 [,]

0 0 () [,] [,]

c y

c f x x

x x c f x x f x x

     
          
           

1 1 1

2 1 2 1 2

3 2 3 1 2 1 2 3

3 1

1 0 0

0 1 0 [,] [,]

0 0 1 [,] [,] [, ,]

()

c y y

c f x x f x x

c f x x f x x f x x x

x x

 
                               
  

Second-order divided differences

Divide the third row by x3-x1

f[x1,x2,x3] is the second-order divided difference involving the
three points (x1,y1), (x2,y2), and (x3,y3).

The convention is to define the zeroth-order divided
difference as f[xi]=yi so that y1=f[x1].

The Newton form of the quadratic polynomial can be written
as

1 1

2 1 2

3 1 2 3

[,]

[, ,]

c y

c f x x

c f x x x

   
      
      

2 1 1 2 1 1 2 3 1 2() [] [,]() [, ,]()()P x f x f x x x x f x x x x x x x     

The coefficients of the Newton polynomial are divided
differences.

What about the cubic polynomial in Newton Form?

3 1 2 1 3 1 2 4 1 2 3() () ()() ()()()P x c c x x c x x x x c x x x x x x         

2 3 4 1 2 3
1 2 3 4

4 1

3 4 2 3
2 3 4

4 2

[, ,] [, ,]
[, , ,]

[,] [,]
[, ,]

f x x x f x x x
f x x x x

x x

f x x f x x
f x x x

x x







3 1 1 2 1 1 2 3 1 2

1 2 3 4 1 2 3

() [] [,]() [, ,]()()

[, , ,]()()()

P x f x f x x x x f x x x x x x x

f x x x x x x x x x x

     
   

Homework to derive these expressions.

3 2 1 2 3 4 1 2 3() () [, , ,]()()()P x P x f x x x x x x x x x x    

1 1 2 1 1 2() () [, ,...,]()()...()n n n nP x P x f x x x x x x x x x     

Properties of Divided Differences
• The divided difference f[x1,x2,…xk] is the coefficient of xk-1

in the polynomial that interpolate (x1,f1), (x2,f2), …, (xk,fk),

1 1 2 1 1 2 3 1 2

1 2 1 1 2

() [] [,]() [, ,]()() ...

[, ,...,]()()...()
n

n n

P x f x f x x x x f x x x x x x x

f x x x x x x x x x

      
   

1 1 2 1 1 2() () [, ,...,]()()...()n n n nP x P x f x x x x x x x x x     

• The interpolating polynomial of degree n can be obtained
by adding a single term to the polynomial of degree n-1
expressed in the Newton form

• If f(x) is a polynomial of degree k, then the divided
differences of order k+2, k+3, …, are identically zero.

Properties of Divided Differences
• A sequence of divided differences may be

constructed recursively from the formula

2 1 1
1

1

[,...,] [,...,]
[,...,] k k

k
k

f x x f x x
f x x

x x




[]i if x y
and the zeroth-order divided difference is defined by

• The divided difference f[x1,…,xk] is invariant
under all permutations of its arguments x1,…,xk.

Divided Difference Tables
• The equation of divided differences is recursive:

– A higher order coefficient is defined as the difference of
two lower order coefficients, which in turn, defined as a
differences of the next lower order coefficients.

– The recursion terminates when only zeroth-order
difference remains.

• The divided differences can be manually evaluated
with the aid of divided-difference table.

2 1 1
1

1

[,...,] [,...,]
[,...,] k k

k
k

f x x f x x
f x x

x x




[]i if x y

f[x1,x2,x3]

f[x1,x2] f[x2,x3]

f[x1] f[x2] f[x3]

• The table organizes the calculation in a way that shows the dependence
of higher order coefficients on lower order coefficients.

• The first two columns are the known (xi,yi) data
• The third column contains first-order divided differences, which depend

on the data in the preceding columns.
• Higher order differences are obtained from lower order differences in the

columns to the left.

2 1 1
1

1

[,...,] [,...,]
[,...,] k k

k
k

f x x f x x
f x x

x x




Exercise

Use cubic interpolation to
find the value of I for
V=1.5, with the four data
pairs of v = 0.4, 0.75, 1.3,
and 2.0.

Why choosing these four
points?

Think about how to
automatically calculate the
divided-differences and
the interpolation for V=1.5.

V 0 0.4 0.75 1.3 2 3 4.5 5

I 0 4.95 10.14 15.0 17.6 19.05 20.32 20.5

Use the code divDiffTable_exercise.m as the starting point.

Implementation
• Only the diagonal entries in the divided-difference

table are used to evaluate the Newton polynomial.
• However, it is impossible to compute only the

diagonal entries of the table, because higher order
divided differences are defined by lower order
divided differences.

• The diagonal entries must be built up from the
lower order differences.

• It is not necessary to store all the intermediate
results.

• Consider the creation of a cubic polynomial in a
Newton basis. For convenience, the polynomial is
written as

3 1 2 1 3 1 2 4 1 2 3() () ()() ()()()P x c c x x c x x x x c x x x x x x         
• The immediate goal is to devise an algorithm to obtain the coefficients without first

constructing the entire matrix and then extracting the diagonals for the interpolation.

• This is achieved by storing the intermediate (lower order) divided differences in
vector c and overwriting appropriate elements of c as needed.

• The boldface symbols on the diagonal of the table are the
final values of the ci. The ci values below the diagonal are
overwritten during the execution of the algorithm.

• Since the values of ci are overwritten, it is necessary to
sweep from the bottom of the table up to the diagonal.

Notations

• In the equations above, the degree-n polynomial
is defined over the set of support points (xi,yi),
i=1,…,n+1.

• In most of books on numerical mathematics, the
range of indices of the n+1 support points is i=0,
…,n.

• The i=0 index enables notational convenience,
but it is inconsistent with MATLAB vectors and
matrices, which have a starting index of 1.

• We will use the conventional notations (starting
from i=0) in the following slides so that you are
familiar with both systems of notations.

Differentiation Using
Interpolating Polynomials

• The expression of function f is unknown, but its n+1
values are known, (x0,f0), (x1,f1), (x2,f2), … (xn,fn).

• You want to build a n-th degree polynomial with the
Newton basis

0 1 0 2 0 1 1 2 1() () ()() ... ()()...()n n nP x c c x x c x x x x c x x x x x x           

• If we choose the coefficient c so that Pn(x)=f(x) at
the n+1 known points, (xi,fi), i=0,1,…,n, then Pn(x)
is an interpolating polynomial.

• Derivative of this polynomial then provides an
approximation to the derivative of the function f(x).

Determine Coefficient using
Divided Differences

Special standard notation used for divided differences.
First divided difference between x0 and x1

[1]1 0 1 0
0 1 0

1 0 1 0

() ()
[,] ()

f x f x f f
f x x f

x x x x

   
 

First divided difference between x1 and x2

[1]2 1
1 2 1

2 1

[,] ()
f f

f x x f
x x

 
 [,] t s

s t
t s

f f
f x x

x x




Second divided difference between x0, x1 and x2

[2]1 2 0 1
0 1 2 0

2 0

[,] [,]
[, ,] ()

f x x f x x
f x x x f

x x

 


a shorter version

[]1 2 0 1 1
0 1 0

0

[, ,...,] [, ,...,]
[, ,...,] ()nn n

n
n

f x x x f x x x
f x x x f

x x
 


n-th order

General
Expression

Differentiation Based on Newton Basis

Taking the derivative of Pn(x) with respect to x gives
' [1] [2]

0 0 0 1

[3]
0 0 1 1 2 0 2

1
[] 0 1 1

0
0

() [() ()]

 [()() ()() ()()]

()()...()
...

()

n

n
n n

i i

P x f f x x x x

f x x x x x x x x x x x x

x x x x x x
f

x x






    

        
   



[0] [1] [2]
0 0 0 0 0 1

[3]
0 0 1 2

[]
0 0 1 1

() () ()()

()()() ...

()()...()

n

n
n

P x f f x x f x x x x

f x x x x x x

f x x x x x x 

     

    

   

Because f(x)=Pn(x)+Error, f’(x)= P’n(x)+Error’.

Error of Interpolation

Define the error function

which is zero for x=x0, x1, …,xn. Therefore,

To determine g(x), we define an auxiliary function,
W(t), as

which is zero for t=x and x=x0, x1, …,xn.

(1)

0 1

()
() ()() ()

(1)!

n

n

f
E x x x x x x x

n



   


L

0 1() () () ()() () ()n nE x f x P x x x x x x x g x     L

0 1

() () ()

() () ()() () () 0
n

n n

f x P x E x

f x P x x x x x x x g x

  
     L

0 1() () () ()() () () 0n nW t f t P t t x t x t x g x      L

Take the n+1 order of derivative of W(t) with
respect to t. There must be a ξ in the interval
that has x0, xn, or x as endpoint, i.e., ξ between
(x0, xn, x). Take t=ξ, we have

Therefore,

According to the error definition,

we have

0 1() () () ()() () () 0n nW t f t P t t x t x t x g x      L

(1) (1)() () 0 (1)! () 0n nW f n g x      

(1)

0 1 0

()
() ()() () between (, ,)

(1)!

n

n n

f
E x x x x x x x x x x

n

 


   


L

0 1() () () ()() () ()n nE x f x P x x x x x x x g x     L

(1) ()
()

(1)!

nf
g x

n






Error of Interpolation
• The expression for error is not always useful, because

the function, f, is unknown. We thus cannot evaluate its
(n+1)-st derivative.

• However, we can conclude that, if the function is “smooth”
(the smaller the higher derivative of a function, the
smoother the function is), the error is small. In line with
this, a lower-degree polynomial should work satisfactorily.

• On the other hand, a “rough” function can be expected to
have larger errors when interpolated.

• We can also conclude that extrapolation will have larger
errors than for extrapolation, because of the (x-xi) terms.

Error of Derivative

Error of the approximation to f’(x), when x=x i, is

[0] [1] [2]
0 0 0 0 1 0

[3]
0 1 2 0

[]
0 1 1 0

() () ()()

()()() ...

()()...()

n

n
n

P x f x x f x x x x f

x x x x x x f

x x x x x x f

     

    

   
' [1] [2]

0 0 0 1

[3]
0 0 1 1 2 0 2

1
[] 0 1 1

0
0

() [() ()]

 [()() ()() ()()]

()()...()
...

()

n

n
n n

i i

P x f f x x x x

f x x x x x x x x x x x x

x x x x x x
f

x x






    

        
   



(1)

0
0

()
() between (, ,)

(1)!

nn

i j n
j
j i

f
x x x x x

n

 





 
   
  


Equally Spaced Data
Even though divided difference can handle any table, it is instructive to see how ordinary differences can estimate

the derivative when a table is evenly spaced.

Denote s=(x-xi)/h, Δfi=fi+1-fi, Δ2fi=Δ(Δfi), and Δnfi=Δ(Δn-1fi), we can write the general form

[0] [1] [2]
0 0 0 0 0 1

[3]
0 0 1 2

[]
0 0 1 1

() () ()()

()()() ...

()()...()

n

n
n

P x f f x x f x x x x

f x x x x x x

f x x x x x x 

     

    

   

2 3

1

0

(1) (1)(2)
()

2! 3!

... ()
!

n i i i i

nn
i

j

s s s s s
P s f s f f f

f
s j

n





        

  
(1)

1

0

()
() ()

(1)!

nn
n

j

f
E s s j h

n






 
    



as

(1)

0 1

()

()
()() ()

(1)!

n

n

E x

f
x x x x x x

n





  


L

2 3

1

0

(1) (1)(2)
()

2! 3!

... ()
!

n i i i i

nn
i

j

s s s s s
P s f s f f f

f
s j

n





        

  
(1)

1

0

()
() ()

(1)!

nn
n

j

f
E s s j h

n






 
    



11

1 0 0

1
() () ()

1
()

!

n n n

jjjn
i

i
j k l

l k

d d ds d
P s P s P s

dx ds dx h ds

f
f s l

h j



  


 

  
           

 

(1)(1)
Error () ()

(1)

n n
n nh

f O h
n

 


When x=xi, s=0. Then the error is

2 3

1

0

(1) (1)(2)
()

2! 3!

... ()
!

n i i i i

nn
i

j

s s s s s
P s f s f f f

f
s j

n





        

  

Simpler Formulas
The equation of Pn’(s) will becomes substantially simpler, if we
evaluate it at x=xi, i.e., s=0.

The error is O(hn), depending on the number of data used for
the differentiation, i.e., the n value.

An Example of 2nd-order polynomial

• Three points (xi,fi), (xi+1,fi+1), (xi+2,fi+2)

• 2nd order polynomial

2

1
2 1 1 1 1 1 1

1

2 2 2 2 1 2 2 1 2

2 1 2

()

() () [,]

() () ()()

[, ,]

i i i

i i
i i i i i i i i i

i i

i i i i i i i i i i i

i i i i

P x f a

f f
P x f a x x a a f x x

x x

P x f a x x a x x x x a

a f x x x


     



       

  

 
      


      


• Three unknowns: ai, ai+1, and ai+2

Evenly Spaced Data

If the three x points are evenly spaced, the
expression of P2(x) can be simplified.

P2’(x)=

Derivative of Interpolating Polynomial

Exercise:
Derive the forward difference at xi

•f’(xi)=(fi+1-fi)/Δx+O(Δx)
•f’(xi)=(-fi+2+4fi+1-3fi)/(2Δx)+O(Δx2)

MATLAB Implementation
 and Textbook Example

• Diff(f) is equivalent to Δf.
• A simple forward-difference estimate of the

derivative is given by diff(f)./diff(x), where f are
the function values at the n points x.

• Note that if x has length n, diff returns a vector of
length n-l.

• “diff” can be nested, so that Δ2f =diff(diff(f)).

• How does the truncation error changes when
more and more terms are included?

• Does the truncation error matter here?

Polynomial Wiggle
• Increasing the degree of a polynomial interpolant does not

necessarily increases the accuracy of the interpolation.

• By definition, the interpolant, F(x) matches the true function
at the support points. However, one cannot guarantee that
“between” the support points, F(x) will be a good
approximation to the true f(x) that generated the support
points.

• If, for example, f(x) is a known analytical function and the
size n of the set of support points used to define F(x) is
allowed to increase (and hence increase the degree of the
polynomial F(x)), the interpolant will likely tend to oscillate
between the support points.

• This polynomial wiggle can occur even when the true f(x) is
smooth.

• Solid line:

• Interpolation
• Dashed line:

• Extrapolation

• The variation between data is OK when polynomials are constructed for up to six
data.

• Interpolation error however increases afterward, and becomes so huge in the end
that the interpolating polynomial has nothing in common compared to the
characteristic revealed by data.

• The polynomial wiggle make appearance of higher-order polynomials unacceptable
for data interpolation.

Piecewise Polynomial Interpolation
• Interpolation with piecewise polynomials provides a practical

solution to the shortcoming of high-degree polynomial
interpolation.

• Instead of approximating the function by passing a single
interpolant through a large number of support points,
piecewise polynomial interpolation uses a set of lower
degree interpolants, each of which is defined on a subinterval
of the whole domain.

• The joints between adjacent piecewise interpolants are
called the breakpoints, or knots.

• The use of piecewise functions introduces new features to
the interpolant.

• The relation between adjacent piecewise functions is of
fundamental importance.

The shape of adjacent interpolants is affected by constraints on
the continuity of the interpolants and its derivatives at the
breakpoints.

Four piece-wise linear
functions; functions
continuous but derivatives
discontinuous at knots

Two adjacent quadratic
interpolants; functions
continuous but derivatives
discontinuous at knots

Two adjacent quadratic
interpolants; functions and
derivatives continuous at
knots (cubic spline)

• Change of notations
For the piecewise polynomial interpolation, Pi(x) will designate a polynomial defined n the i-th segment of

a piecewise continuous curve. The i-th segment is delimited by xi≤x ≤xi+1.

• Computational tasks
– The overall computing is still to first construct and then evaluate the interpolant.
– Since the piecewise interpolant is not global (i.e., not a single function for all support points), the

appropriate subinterval must be located before the interpolation function is evaluate.
– The tasks required to perform a piecewise interpolation at a point x are:

• Location x in the set of support points (xi,yi), i=1,…,n

• Compute the coefficients of the local interpolating polynomial defined for the appropriate
support points

• Evaluate the local interpolating polynomial
– If the piecewise interpolants have continuity of first and higher derivatives, then adjacent

interpolants may be coupled. Thus, although the individual interpolants are local, by virtual of being
connected to each other at the breakpoints, they exhibits some global behavior.

Piecewise-Linear Interpolation
• The simplest piecewise interpolation scheme: use linear

interpolants between each successive pair of
breakpoints.

• Exercise: Consider interpolation to find the value of y at
x=0.75 for the dataset below:

 x 0.2 0.6 1.0 1.4

 y 0.5535 1.0173 1.0389 0.8911
• The only complication in implementing piecewise-linear

interpolation is in determining the appropriate pair of
support points for use in constructing the interpolant.

• The search of support points can be done by using
incremental search or binary search methods.

Piecewise-Cubic Hermite Interpolation

• It would be logical to follow the presentation of
piecewise-linear interpolation with a
piecewise-quadratic interpolation.

• However, in practice, he advantage of
piecewise-quadratic functions over piecewise-linear
functions are not compelling.

• For the purpose of interpolating known data,
piecewise-cubic functions are much more useful.

• There are two different types of piecewise-cubic
interpolating functions: Hermite polynomials and cubic
splines

Piecewise-Cubic Hermite Interpolation

Hermite polynomials are required to agree with
the functions and its first derivative at each of
the support points.

If the cubic form of Pi(x) is written as
2 3() () () ()i i i i i i i iP x a b x x c x x d x x      

The four unknown coefficients are defined by requiring that
' '

' '
1 1 1 1

() (), () ()

() (), () ()

i i i i i i

i i i i i i

P x f x P x f x

P x f x P x f x   

 

 

'

' '
1 1

1

' '
1 1

2
1

()

()

3 [,] 2 () ()

()

() 2 [,] ()

()

i i

i i

i i i i
i

i i

i i i i
i

i i

a f x

b f x

f x x f x f x
c

x x

f x f x x f x
d

x x

 



 







 


 


Two piecewise polynomials:
Pi(x) on [xi,xi+1] and Pi+1(x) on [xi+1,xi+2]

Piecewise-Cubic Hermite Interpolation
• The Hermite polynomials have the following two desirable

properties:
– The segments of the piecewise Hermite polynomials have continuous first

derivative at the support points.

– The shape of the function being interpolated is better matched, because
the tangent of this function and the tangent of the Hermite polynomial
agree at the support points.

• Because interpolating Hermite polynomials requires values of
both y=f(x) and f’(x), they are better suited to interpolation of
analytical functions that discrete data, say, from an experiment.

• For the interpolation of discrete data wit unknown f’(x), splines
are recommended.

• Questions: if the function is known, why do we need to
interpolate the function?

Purpose of Interpolation

• Plotting a smooth curve through discrete
data points

• Reading the lines of a table

• Differentiating or integrating tabular data

• Evaluating a mathematical function quickly
and easily

• Replacing a complicated function by a
simple one

Cubic Spline Interpolation

• A spline is a piecewise polynomial of degree k that is continuously differentiable k-1 time.

• Each Pi(x) is a cubic polynomial, and at each breakpoint, the P i(x), Pi’(x), and Pi’’(x) are
continuous.

• By requiring continuous Pi’’(x), the cubic spline avoids the need to specify the value of f’(x).

• This however requires solving a system of linear equation.

Knows and Unknows
• For n data pairs, there are n-1 piecewise-cubic

polynomials. The number of unknown is 4(n-1), because
each polynomial has four unknowns.

• Since each of the n-1 polynomials must match the 2 given
y values at the breakpoints of its segment, we have 2(n-1)
constraints.

• Since it is required that the first derivative is continuous for
the interior points, we have (n-2) constraints.

• Since it is required that the second derivative is continuous
for the interior points, we have (n-2) constraints.

• We therefore have 4n-6 constraints, and need two more!

A Simple Example

• We have three data pairs (t1,y1), (t2,y2),
and (t3,y3).

• We want to build two cubic splines in the
intervals of [t1,x2] and [t2,x3].

• For simplicity, let’s use the monomial basis

The Two Constraints

• Fixed-slope end condition: Specify the first
derivative at the two end points, based either
on desired boundary conditions (e.g., f’(x)=0)
or on estimates of the derivative from the data.

• “Natural” end condition: force the second
derivative to be zero at the endpoints,

• Not-a-knot condition: require continuity of
P’’’(x) at the first interval knots at x2 and xn-1.

The not-a-knot end
conditions are the
most accurate end
conditions when
information on the
slope of the spline
at the end points is
not known.

MATLAB Built-in Functions

• Interp1/interp2/interp3: One/two/three-dimensional
interpolation with piecewise polynomials

• interpft: one-dimensional interpolation of uniformly
spaced data using Fourier series

• interpn: n-dimensional extension of methods used
by interp3

• spline: one-dimensional interpolation with
cubic-splines using not-a-knot or fixed-slope end
conditons.

Why Numerical Integration?

• The integrand f(x) may be known only at certain points, such as
obtained by sampling.

• The integrant f(x) may be known, but it may be difficult or impossible
to find an analytical expression of the integration. In other words, a
closed-form expression for the integration involving elementary
functions (not other integrals) cannot be found. An example of such
an integrand is f(x) = exp(−x2) when evaluating the error function.

• The analytical expression is available, but it may be easier to
compute a numerical approximation than to compute the analytical
expression, such as infinite series or product, or if its evaluation
requires a special function which is not available.

Estimate the area S numerically.

Numerical Integration

• A large class of numerical integration methods can be
derived by constructing interpolating functions which are
easy to integrate.

• Typically these interpolating functions are polynomials.
• Interpolation with polynomials evaluated at equally-spaced

points in yields the Newton–Cotes formulas.
– Rectangular rule (zero-order)
– Trapezoidal rule (first-order)
– Simpson rule (second- and third-order)

• If we allow the intervals between interpolation points to
vary, we find another group of quadrature formulas, such
as the Gaussian quadrature formulas.

Basic Ideas and Nomenclature

• Numerical integration is also called numerical
quadrature.

• The term quadrature originally referred to the
process determining the dimension of a square
having the same area as other planar shape.

• This suggests a basic computational strategy of
numerical integration:
– To evaluate an integration, approximate the curve

y=f(x) with a simple function that is easy to integrate;
– The area under the simple curve is approximately

equal to the area under f(x).

Basic Ideas and Nomenclature

• The figure shows a piecewise-linear approximation to a
function.

• The area under this approximation can be computed by
summing the areas of the trapezoidal regions between the
piecewise approximation and the x-axis.

• Polynomials are very easy to integrate, and theory of
polynomial interpolation is well understood.

• Most numerical integration schemes involve constructing a
polynomial interplant to f(x0 and then integrate the interpolant
to obtain an approximation to the integral of f(x).

• A global interval [a,b] is divided into N panels.
• On each panel, a relatively low-degree polynomial approximation to f(x)

is created.
• Integrating the polynomial approximation in the panel gives what is called

a basic rule. A basic rule involves just enough (x,f(x)) pairs to define one
segment of the piecewise polynomial.

• Applying the basic rule to each of the N panels and adding together the
results gives what is called a composite rule or an extended rule.

• The location and number of the nodes within a panel determine many important
characteristics of the basic rule.

• When the nodes are equally spaced, the resulting integration formulas are known as
Newton-Cotes rules.

• In Contrast, Gaussian quadrature rules use nodes chosen as the zeros of orthogonal
polynomials.

• Gaussian quadrature rules have a much smaller truncation error than the corresponding
Newton-Cotes rules using the same number of nodes.

• Although the Gaussian quadrature rules are more complex to derive, they are not
significantly harder to implement in a program.

Rectangular Rule

• The simplest approach to numerically integrating
a function f over [a,b] is to divide the interval into
n subdivisions of equal width, Δx=(b-a)/n and
approximate f in each interval.

• The simplest method of this type is to let the
interpolating function be a constant function (a
polynomial of order zero) which passes through
the point ((xi+xi+1)/2, f((xi+xi+1)/2)).

1 1
1

1

() ()
2

2

i

i

x
i i

i ix

i i

x x
d x dx x x f

x x
f x

 




     
    


For each interval Δx

Composite Trapezoidal Rule

If the interval [a,b] is subdivided into n subintervals of size
Δx, then, over the whole interval, the trapezoidal rule gives

Trapezoidal rule: for each interval Δx

The formula is beautifully simple, and it can be applied to
both equally spaced or non-equally spaced points.

Composite trapezoidal rule:

1() ()f x P x error 

   

2 2 2

1 1 1

2 2

1 1

2 1
1 1 2

1 2 2 1

1 2
2 1 1 2

() ()

1
()

2

x x x

x x x

x x

x x

x x x x
I f x dx P x dx f f dx

x x x x

f f
x x dx x x dx f f h

h h

        

      

  

 

Derive the trapezoidal rule
from the Lagrange
interpolating polynomial?

2 1
1 1 2

1 2 2 1

()
x x x x

P x f f
x x x x

  
 

Derive Trapezoidal Rule Using
Newton-Cotes Formulas

• Newton-Cotes formulas: integrate the
interpolating polynomial for equally spaced
points.

• Trapezoidal rule is to approximate the function in
each interval by a linear segment.

• The interpolating polynomial is of the first order.

You can use the same technique for higher order polynomials

Local Error and Global Error

• Truncation errors have an important role in numerical
– Local error for each interval
– Global error for the entire interval

• The truncation error of a quadrature rule can be measured by applying it to
an integral that has a known analytical formula.

• Theoretical formulas for the truncation error are also available from
numerical analysis.

• Theoretical formulas show that the truncation error for each method
decreases in a precise way as the number of nodes used in the integration is
increased.

• If we found the limiting value of the sum as the widths of the intervals
approach zero, we would have the exact value of the integral.

• Comparing the measured error with the theoretical formula for the error
allows for the verification of the code implementing a numerical integration
method.

Local Error of a Single Subinterval

Second-order polynomial

First-order polynomial

1

0

12 '' 3 ''

0

3 2
3 '' 3 ''

0 1

(1) (1)
() () () ()

2 2

1 1
() () () ()

06 4 12

x

x

s s s s
Local Error x f dx x f ds

s s
x f x f x x

 

  

    

 
        

 

 

The local error is O(Δx3)

The error is given by (Δx2/2)(s)(s-1)f’’(ξ), where ξ is some point in the interval (x0,x1).

Global Error of the Entire Interval

Each ξi is found in the n successive subinterval. If we
assume that f’’(x) is continuous on (a,b), there is
some value of x in (a,b) – say x=ξ – at which the
value of the sum is equal to n f’’(ξ), then

3 '' '' ''
1 2

1
() () () ... ()

12 nGloabl Error x f f f         

3 '' 2 '' 21 ()
() () () () ()

12 12

b a
Gloabl Error x nf x f O x        

This explains why the numerical integral becomes more
accurate when the width of the subinterval becomes smaller.
The global error is larger than the local error.

Exercise
• Calculate the analytical solution of
• Use the trapezoidal rule to calculate

Take the width of each subinterval as 0.2.
• Calculate the exact error.
• Analyze the global error, and compare it with the exact

error.
• Use the Simpson’s 1/3 rule with 2, 4, 6, … panels, until

the numerical integration converge to the three
decimal places.

• Apply the Simpson’s 3/8 rule with 3, 6, 9,…panels,
until the numerical integration converge to the three
decimal places.

3.4

1.8

xe dx

Simpson’s Rules
• Apply the Newton-Cotes formulas to the

second- and third-order interpolating
polynomials.

• Simpson’s 1/3 rule (O(Δx5))

• Composite formulas (O(Δx4))

Because the method uses pairs of panels, the number of
panels (subintervals) must be even.

Simpson’s Rules

• Apply the Newton-Cotes formulas to the
third-order interpolating polynomial gives
the Simpson’s 3/8 rule (O(Δx5)).

• Adding the extra point into the formula
does not increase the order of accuracy of
the approximation.

Trapezoidal rule approximation

Simpson rule approximation

Exercise
• Calculate the analytical solution of
• Use the trapezoidal rule to calculate

Take the width of each subinterval as 0.2.
• Calculate the exact error.
• Analyze the global error, and compare it with the exact

error.
• Use the Simpson’s 1/3 rule with 2, 4, 6, … panels, until

the numerical integration converge to the three
decimal places.

• Apply the Simpson’s 3/8 rule with 3, 6, 9,…panels,
until the numerical integration converge to the three
decimal places.

3.4

1.8

xe dx

Velocity Distribution

• Laminar flow

Still parabolic, but the maximum is at the
surface

• Turbulent flow

Logarithmic

kr is a channel roughness parameter
Gives u distribution in z direction

Mean Velocity
Mean velocity in a channel is the sum, or integral, of the
velocity at each point in a cross-section divided by the
cross-sectional area:

If the channel is wide and rectangular, then we can
reasonably assume that the velocity is the same at each
point across the channel. In this case integrating across
the channel is equivalent to multiplying by channel width

Gaussian Quadrature

• In the Newton-Cotes methods, the xi values are
predetermined before the numerical integration.

• The general form is

• Gauss observed if we remove the requirement that the
function be evaluated at predetermined x-values, a
three-term formula will contain six parameters (the three
x-values are now unknown, plus three weights) and should
correspond to an interpolating polynomial of degree 5.

• It can be applied only when f(x) is known explicitly so that
f(x) can be evaluated at any desired value of x.

1

() ()
nb

i ia
i

f x dx w f x


 
• We have n points of xi

• We have n real coefficients
• 2n unknowns can be used to exactly interpolate and integrate polynomials of

degree up to 2n-1.

Gaussian Quadrature:

Gaussian Quadrature
• To simplify the calculations, we will evaluate the integrals over the

interval [-1 1].
• A simple case: two-term formulas with four unknowns

should correspond to an interpolating polynomial of degree 3, including
f(x)=x3, f(x)=x2, f(x)=x, and f(x)=1. Assume the function is a cubic
polynomial: f(x)=a0+a1x+a2x2+a3x3.

This implies that:
1 1 2 3

0 1 2 21 1

2 3 2 3
1 0 1 1 2 1 2 1 2 0 1 2 2 2 2 2

() ()

() ()

f x dx a a x a x a x dx

w a a x a x a x w a a x a x a x

 
   

       
 

Since the coefficients of a are arbitrary, the terms in parenthesis must be
zero.

Determine the one-term Gaussian Quadrature formulas

   
   

1 1

0 1 2 1 1 1 2 21 1

1 12 2 2 3 3 3
2 1 1 2 2 3 1 1 2 21 1

0

a w w dx a w x w x xdx

a w x w x x dx a w x w x x dx

 

 

     

     

 

 

1 1 2 3
0 1 2 21 1

2 3 2 3
1 0 1 1 2 1 2 1 2 0 1 2 2 2 2 2

() ()

() ()

f x dx a a x a x a x dx

w a a x a x a x w a a x a x a x

 
   

       
 

General Expression

• If the limits are [a,b] rather than [-1,1], then
it is necessary to use the linear
transformation

t= [(b-a)x+b+a]/2, dt = [(b-a)/2]dx

General Expression

=

Exercise

Use the two-term Gaussian quadrature formulas to evaluate

Divide the domain into two panels (use equal size for
convenience), and use the two-term Gaussian quadrature
formulas in each panel to evaluate the integral.

/ 2

0
sin xdx





	Chapter 3 Numerical Differentiation, Interpolation, and Integration
	Measuring Flow in Natural Channels
	PowerPoint Presentation
	Outline of This Chapter
	Slide 5
	Determine the Manning’s Coefficient and Estimate Discharge
	Finite Difference
	Approximation Error
	Truncation Error: Taylor Series Approach
	Truncation Error of Approximating f’
	Central Difference Approximation
	Higher-order Derivatives
	Interpolation
	Slide 14
	Polynomials
	Slide 16
	Basic Ideas
	Slide 18
	Interpolation versus Curve Fitting
	Interpolation and Extrapolation
	Extrapolation to Predict the Future
	Interpolating Polynomials of Arbitrary Degrees
	Monomial Basis
	Vandermonde Systems
	Slide 25
	Exercise
	Lagrange Basis
	Slide 28
	Quadratic Interpolating Polynomial
	Slide 30
	Lagrange vs. Monomial Polynomials
	Interpolating Polynomials Are Unique
	Differentiation using Interpolating Polynomial
	Slide 34
	Unequally Spaced Data
	Implementation
	Slide 37
	Slide 38
	Polynomial Interpolation with a Newton Basis
	Divided-Difference Notation
	Quadratic Polynomial in Newton Form
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Properties of Divided Differences
	Slide 48
	Divided Difference Tables
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Notations
	Differentiation Using Interpolating Polynomials
	Determine Coefficient using Divided Differences
	Differentiation Based on Newton Basis
	Error of Interpolation
	Slide 60
	Slide 61
	Error of Derivative
	Equally Spaced Data
	Slide 64
	Simpler Formulas
	An Example of 2nd-order polynomial
	Evenly Spaced Data
	Derivative of Interpolating Polynomial
	Slide 69
	MATLAB Implementation and Textbook Example
	Polynomial Wiggle
	Slide 72
	Piecewise Polynomial Interpolation
	Slide 74
	Slide 75
	Piecewise-Linear Interpolation
	Piecewise-Cubic Hermite Interpolation
	Slide 78
	Slide 79
	Slide 80
	Purpose of Interpolation
	Cubic Spline Interpolation
	Knows and Unknows
	A Simple Example
	The Two Constraints
	Slide 86
	MATLAB Built-in Functions
	Why Numerical Integration?
	Numerical Integration
	Basic Ideas and Nomenclature
	Slide 91
	Slide 92
	Slide 93
	Rectangular Rule
	Composite Trapezoidal Rule
	Slide 96
	Derive Trapezoidal Rule Using Newton-Cotes Formulas
	Local Error and Global Error
	Local Error of a Single Subinterval
	Global Error of the Entire Interval
	Slide 101
	Simpson’s Rules
	Slide 103
	Slide 104
	Slide 105
	Velocity Distribution
	Mean Velocity
	Gaussian Quadrature
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	General Expression
	Slide 114

