
Chapter 3 

Numerical Differentiation, 
Interpolation, and Integration

Instructor: Dr. Ming Ye



Measuring Flow in Natural Channels



 

Mean-Section Method

(1) Divide the stream into a number of rectangular elements
(2) Use current meter to measure speed of the flow in each 

rectangular. The velocity is approximately the average velocity 
for that rectangular.

(3) Multiply the average velocity by the area of the rectangular.
(4) Sum across the stream.
(5) Divide the sum by total area of the cross-section.



Outline of This Chapter 
• If the function is smooth, analytically known, and 

can be evaluated anywhere 
– Finite difference with Taylor series expansion 

• If only certain function values of the function are 
known
– Interpolation (if the values are sufficiently smooth) or 

curve fitting (if the values are noisy)
– Numerical differentiation: a computer program 

consists of basic arithmetic operations and elementary 
functions, each of whose derivatives is easily 
computed.

• Numerical integration
• MATLAB functions



• If all the 21 data points were fit exactly by a polynomial of degree 20, then the 
derivative of that polynomial would be quite erratic, changing sign many times, and 
moreover the derivative would be highly sensitive to small change in the data.

• In sharp contrast, the derivative of the approximating quadratic polynomial is well 
behaved and relatively insensitive to change in the data.



Determine the Manning’s 
Coefficient and Estimate Discharge 

• Once we know mean velocity, 
slope, and depth (or hydraulic 
radius), we can determine the 
value of Manning's n using 
Manning's equation. 

• Once we know the value of 
Manning's n, we can use the 
Manning's equation to estimate 
stream velocity and discharge, when 
direct hydraulic measurements are 
absent. 



Finite Difference
Mathematical definition of a derivative 

In numerical differentiation, instead of 
taking the limit as Δx approaches zero, 
Δx is allowed to have some small but 
finite value.

Pick a small value Δx; evaluate f(x+Δx); you probably have 
f(x) already evaluated, but if not, do it too; finally apply the 
equation. 



Approximation Error

• Thought of geometrically, this estimate of a 
derivative is the slope of a linear approximation 
to the function f over the interval Δx. 

• Applied uncritically, the above procedure is 
almost guaranteed to produce inaccurate 
results.

• How well a linear approximation works depends 
on the shape of the function f and the size of the 
interval Δ x.

• Truncation error and roundoff error



Truncation Error:
Taylor Series Approach

Taylor series expansion

The remainder



Truncation Error of Approximating f’

Forward difference

Backward difference



Central Difference Approximation

The higher order approximation yield a 
more accurate estimate of the derivative, 
but

Subtracting these leaves

• Computational cost is higher.
• Not applicable at the domain boundaries where a forward or backward 

estimate is necessary.



Higher-order Derivatives

Add the two terms
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Can you get this from finite difference?



Interpolation
• Using Taylor series expansions to derive finite difference 

formulas becomes increasingly cumbersome for 
approximations of increasingly high accuracy or higher-order 
derivatives.

• We next consider an alternative method based on polynomial 
interpolation that is not only more convenient but will also more 
readily permit generalization such as using unequally spaced 
points.  

• Interpolation is an important part of many numerical methods.

• Interpolating polynomials are the building blocks of many other 
numerical methods such as numerical integration and finite 
element.



Interpolation
Interpolation is concerned with the use of interpolation to 
approximate a function that is defined by a table of data.

Viscosity at temperature of 
22oC?
• 1.319: Linear interpolation 

using the viscosity values 
of 20 and 30 oC

• 1.203: Quadratic 
interpolation using more 
data

• The difference is about 
10%.

Plot of viscosity of glycerin at different 
temperatures.



Polynomials

Polynomials are used to construct 
interpolating functions in two primary ways:

• The degree of the polynomial is increased 
to match greater number of points from the 
discrete data set.

• An interpolating function is created by 
assembling a set of low degree 
polynomials defined over subintervals of 
the domain.  



Interpolation

We will cover the following topics
• Basic ideas
• Interpolating polynomials of arbitrary degree

– Monomial basis 
– Lagrange basis 
– Newton basis

• Piecewise polynomial interpolation 
– Linear 
– Hermite polynomials 
– Cubic splines

• MATLAB’s built-in interpolation routines



Basic Ideas
• In the one-dimensional case, a finite set of data (xi,yi), i=1,

…,n is given as discrete samples of some known or 
hard-to-evaluation function y=f(x).

• Interpolation involves constructing and then evaluating an 
interpolation function, or interpolant, y=F(x) at values of x 
that may or may not be in the (xi,yi) data set.

• The interpolation function F(x) is determined by requiring 
that it pass through the known data (xi,yi).

• When x≠xi, the F(x) should also be a good approximation to 
f(x), which created the tabular data in the first place.

• f(x) may be analytically unknown; the (xi,yi) data represent 
the input and output values of n measurements.

• f(x) may be analytically known but difficult and tedious to 
evaluate, especially by manual calculations or computer 
memory is limited. 



Basic Ideas
• In its most general form, interpolation involves 

determining the coefficients, a1, a2,… an in the 
linear combination of n basis functions, Φ(x), 
that constitute the interpolant

F(x)= a1Φ1(x)+a2Φ2(x)+…+anΦn(x)

such that F(xi)=yi for i=1,…,n.

• The basis function may be polynomial 

F(x)= a1+a2x+a3x2+…+anxn-1

or trigonometric

  F(x)= a1+a2eix+a3e2ix+…+ane(n-1)ix



Interpolation versus Curve Fitting

• Interpolation
– The interpolation function passes exactly through each of the known 

points. 
– It assume that the data have no uncertainty.

• Curve fitting
– The approximating function passes near the data points, but 

(usually) not exactly through them. 
– Data uncertainty is recognized.



Interpolation and Extrapolation

• Interpolation involves the construction and 
evaluation of an approximating function within the 
range of the independent variable of the given data 
set.

• Extrapolation is the evaluation of the interpolating 
function outside the range of the given independent 
variable.



Extrapolation to Predict the Future

The extrapolated 
values at the first 
year after the 
known data are 
similar, but the 
values at the fifth 
year are 
dramatically 
different.

Four interpolating functions



Interpolating Polynomials of 
Arbitrary Degrees

• A set of n data points may be interpolated with 
polynomials of up to degree n-1.

• Although the algorithms covered allow 
construction of polynomials with any n, in 
practice, only polynomials of low degree, say, 
less than 5, are useful.

• As n increases, the value of the interpolant 
between the data points takes on values that may 
deviate significantly from the nearby known data 
point. This is the problem of data wiggle.



Monomial Basis
• Polynomial interpolation involves finding the equation 

Pn-1(x), the unique polynomial of degree n-1 that passes 
through n known data pairs, or supporting points. 
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• The common representation of a polynomial of degree 
n-1 is defined in terms of a set of monomial basis 
functions, x0,x1, …, xn-1. 

• Although the monomials uses a familiar and compact 
notations, the polynomials can be written in other formats.

• Consider the shifted polynomial with a known offset
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two polynomials can be the same.



Vandermonde Systems
• The built-in MATLAB routines for evaluating polynomials require 

that the polynomial be written in decreasing powers of x
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• Consider the construction of a quadratic interpolation function that 
passes through the (x,y) support points (-2,-2), (-1,1), and (2,-1).
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Vandermonde Systems
• For an arbitrary set of three points (x1,y1), 

(x2,y2), and (x3,y3), the matrix equation is
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• The coefficient matrix on the left-hand side is called 
a vandermonde matrix.

• Build the matrix in two ways:

>>x = [-2 -1 2]’;

>>A = [x.^2 x ones(size(x))]; Manually

>>A = vander([-2 -1 2]’); MATLAB built-in function 



Exercise

Interpolate the fictitious gasoline price (cents) data below

Year 1986 1988 1990 1992 1994 1996

Price 133.5 132.2 138.7 141.5 137.6 144.2

• Plot the data and the interpolation function.
• What problem do you observe? 
• Why does the problem occur?
• How to solve the problem?



Lagrange Basis
In a monomial basis the linear interpolating polynomial through 
(x1,y1) and (x2,y2) is  
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where the two coefficient are

Substituting the coefficients into P1 and rearranging gives 

This expresses the linear interpolating polynomial in terms of 
a new pair of basis functions L1(x) and L2(x). They are the 
first-degree Lagrange interpolating polynomials.

How to obtain these coefficients?
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Lagrange Basis
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where δij is the kronecker delta.  



Quadratic Interpolating Polynomial 

Quadratic interpolating polynomial using a Lagrange 
basis and passing through three points, (x1,y1), 
(x2,y2), and (x3,y3), is
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The polynomial of degree n-1 in a Lagrange basis is
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Create a figure using MATLAB



Lagrange vs. Monomial Polynomials

Lagrange polynomials have two important 
advantages over interpolating polynomials 
expressed in a monomial basis:
• The coefficients of the Lagrange basis are 
known without solving a system of 
equations.
• The evaluation of the Lagrange 
polynomials is much less susceptible to 
roundoff error.  



Interpolating Polynomials Are Unique

• There is only one polynomial of degree n-1 passing 
through n support points.

• The uniqueness of polynomials means that the 
polynomial of degree n-1 passing the n points must 
be the same whether it is expressed in a monomial 
basis or a Lagrange basis or any other polynomial 
basis.

• The coefficients of the individual basis functions will 
be different, but the values produced by the two 
polynomial expressions will be identical in exact 
arithmetic. However, the results in floating-point 
arithmetic will be different.



Differentiation using Interpolating Polynomial
• If Pn(x) is a good approximation to f(x) over some 

range of x, then Pn’(x) should approximate f’(x) in 
that range. 

• For i=1,…,n-1, the polynomial of degree one 
interpolating the two points, (xi,yi) and (xi+1,yi+1) 
(h=xi+1-xi), is given by the Lagrange interpolant  
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• Differentiating this polynomial with respect to x gives

After taking x=xi, it is the same as the first-order, forward 
difference formula for the first derivative that we derived 
earlier using Taylor series. 

' 1
1 ( ) i iy y

P x
h

 



Exercise

Extend the derivation in the previous slide for

•the central different of the first-order derivative

•the second order derivative 

using the three data points: (xi-1,yi-1), (xi,yi), and 
(xi+1,yi+1) and assuming that the discretization 
space is equal, i.e., 

h=xi+1-xi=xi-xi-1. 



Unequally Spaced Data

Take the derivative with respect to x
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Evaluate the derivative at xi



Implementation

Given a value of x, the numerator of each Lj contains 
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Because these terms are repeated in each of the Lj, it makes sense to compute the difference between x and xk once and store them.

>>xi = …; %equivalent to x

>>x = …;  %equivalent to xk

>>dxi = xi –x; %equivalent to x-xk

>>num = prod(dxi(1:j-1))*prod(dxi(j+1:n)); %prod is a built-in       function  



The denominator can be constructed the same way, but wait
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• We need to store a matrix (at least a triangle matrix) instead of a matrix. 
The memory cost may be high.

• The cost of computing each term (not storing them) is just a factor of two 
of the minimum cost.

>>den = prod(x(j)-x(1:j-1))*prod(x(j)-x(j+1:n)); 



Exercise

• Write a MATLAB code to interpret the gas 
price of the previous exercise.



Polynomial Interpolation with a Newton Basis

• The Newton form of an interpolating polynomial 
of degree n is
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• The Newton bases are 1, (x-x1), (x-x1)(x-x2), 

(x-x1)(x-x2)(x-x3), …

• The coefficients are found by requiring Pn(xi)=yi.

• Although these basis functions may initially seem cumbersome, it turns 
out that the Newton form is more computationally efficient than 
interpolating polynomials written in monomial or Lagrange basis.

• The Newton form has good numerical properties, and it is very useful for 
theoretical analysis of interpolation schemes and numerical integration 
methods.



Divided-Difference Notation

• The Newton form is more computationally 
efficient than interpolating polynomials 
written in monomial or Lagrange bases.

• Determining the coefficients, ci, is made 
easier with the introduction of 
divided-difference notation.

• Start with the quadratic interpolating 
polynomial, and then extend it to the cubic 
one. The general form is given at last. 



Quadratic Polynomial in 
Newton Form

Consider a quadratic polynomial passing three points 
expressed in terms of the Newton basis function
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or in the matrix form 

You can solve it using 
the forward substitution.



• The coefficients, ci, are given by compact 
formulas called divided differences.

• c1=y1. To solve for c2 and c3, subtracting the first 
row from the second and third rows and then the 
new second row from the new third row leads to 
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• Normalizing the 
second column by 
dividing the second 
row by x2-x1 and 
dividing the third 
row by x3-x2 gives
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First-order divided differences
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
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i j

j i

y y
f x x

x x






In general, the first-order divided difference involving 
the ordered pairs (xi,yi) and (xj,yj) is



Subtract the second row from the third row to get

1 1

2 1 2
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c y
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c y y

c f x x f x x

c f x x f x x f x x x

x x

 
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  

Second-order divided differences

Divide the third row by x3-x1

f[x1,x2,x3] is the second-order divided difference involving the 
three points (x1,y1), (x2,y2), and (x3,y3).  



The convention is to define the zeroth-order divided 
difference as f[xi]=yi so that y1=f[x1].

The Newton form of the quadratic polynomial can be written 
as

1 1

2 1 2

3 1 2 3

[ , ]

[ , , ]

c y

c f x x

c f x x x

   
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      

2 1 1 2 1 1 2 3 1 2( ) [ ] [ , ]( ) [ , , ]( )( )P x f x f x x x x f x x x x x x x     

The coefficients of the Newton polynomial are divided 
differences.

What about the cubic polynomial in Newton Form?
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1 2 3 4
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4 2
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Homework to derive these expressions.

3 2 1 2 3 4 1 2 3( ) ( ) [ , , , ]( )( )( )P x P x f x x x x x x x x x x    

1 1 2 1 1 2( ) ( ) [ , ,..., ]( )( )...( )n n n nP x P x f x x x x x x x x x     



Properties of Divided Differences
• The divided difference f[x1,x2,…xk] is the coefficient of xk-1 

in the polynomial that interpolate (x1,f1), (x2,f2), …, (xk,fk), 

1 1 2 1 1 2 3 1 2

1 2 1 1 2

( ) [ ] [ , ]( ) [ , , ]( )( ) ...

[ , ,..., ]( )( )...( )
n

n n

P x f x f x x x x f x x x x x x x

f x x x x x x x x x

      
   

1 1 2 1 1 2( ) ( ) [ , ,..., ]( )( )...( )n n n nP x P x f x x x x x x x x x     

• The interpolating polynomial of degree n can be obtained 
by adding a single term to the polynomial of degree n-1 
expressed in the Newton form

• If f(x) is a polynomial of degree k, then the divided 
differences of order k+2, k+3, …, are identically zero.



Properties of Divided Differences
• A sequence of divided differences may be 

constructed recursively from the formula

2 1 1
1

1

[ ,..., ] [ ,..., ]
[ ,..., ] k k

k
k

f x x f x x
f x x

x x




[ ]i if x y
and the zeroth-order divided difference is defined by

• The divided difference f[x1,…,xk] is invariant 
under all permutations of its arguments x1,…,xk.



Divided Difference Tables
• The equation of divided differences is recursive: 

– A higher order coefficient is defined as the difference of 
two lower order coefficients, which in turn, defined as a 
differences of the next lower order coefficients.

– The recursion terminates when only zeroth-order 
difference remains.

• The divided differences can be manually evaluated 
with the aid of divided-difference table.

2 1 1
1

1

[ ,..., ] [ ,..., ]
[ ,..., ] k k

k
k

f x x f x x
f x x

x x




[ ]i if x y

f[x1,x2,x3]

f[x1,x2] f[x2,x3]

f[x1] f[x2] f[x3]



• The table organizes the calculation in a way that shows the dependence 
of higher order coefficients on lower order coefficients.

• The first two columns are the known (xi,yi) data
• The third column contains first-order divided differences, which depend 

on the data in the preceding columns.
• Higher order differences are obtained from lower order differences in the 

columns to the left.

2 1 1
1

1

[ ,..., ] [ ,..., ]
[ ,..., ] k k

k
k

f x x f x x
f x x

x x






Exercise

Use cubic interpolation to 
find the value of I for 
V=1.5, with the four data 
pairs of v = 0.4, 0.75, 1.3, 
and 2.0.

Why choosing these four 
points?

Think about how to 
automatically calculate the 
divided-differences and 
the interpolation for V=1.5.

V 0 0.4 0.75 1.3 2 3 4.5 5

I 0 4.95 10.14 15.0 17.6 19.05 20.32 20.5

Use the code divDiffTable_exercise.m as the starting point.



Implementation
• Only the diagonal entries in the divided-difference 

table are used to evaluate the Newton polynomial.
• However, it is impossible to compute only the 

diagonal entries of the table, because higher order 
divided differences are defined by lower order 
divided differences.

• The diagonal entries must be built up from the 
lower order differences.

• It is not necessary to store all the intermediate 
results. 



• Consider the creation of a cubic polynomial in a 
Newton basis. For convenience, the polynomial is 
written as

3 1 2 1 3 1 2 4 1 2 3( ) ( ) ( )( ) ( )( )( )P x c c x x c x x x x c x x x x x x         
• The immediate goal is to devise an algorithm to obtain the coefficients without first 

constructing the entire matrix and then extracting the diagonals for the interpolation.

• This is achieved by storing the intermediate (lower order) divided differences in 
vector c and overwriting appropriate elements of c as needed. 



• The boldface symbols on the diagonal of the table are the 
final values of the ci. The ci values below the diagonal are 
overwritten during the execution of the algorithm.

• Since the values of ci are overwritten, it is necessary to 
sweep from the bottom of the table up to the diagonal. 



Notations

• In the equations above, the degree-n polynomial 
is defined over the set of support points (xi,yi), 
i=1,…,n+1. 

• In most of books on numerical mathematics, the 
range of indices of the n+1 support points is i=0,
…,n.

• The i=0 index enables notational convenience, 
but it is inconsistent with MATLAB vectors and 
matrices, which have a starting index of 1.

• We will use the conventional notations (starting 
from i=0) in the following slides so that you are 
familiar with both systems of notations.  



Differentiation Using 
Interpolating Polynomials

• The expression of function f is unknown, but its n+1 
values are known, (x0,f0), (x1,f1), (x2,f2), … (xn,fn).

• You want to build a n-th degree polynomial with the 
Newton basis

0 1 0 2 0 1 1 2 1( ) ( ) ( )( ) ... ( )( )...( )n n nP x c c x x c x x x x c x x x x x x           

• If we choose the coefficient c so that Pn(x)=f(x) at 
the n+1 known points, (xi,fi), i=0,1,…,n, then Pn(x) 
is an interpolating polynomial.

• Derivative of this polynomial then provides an 
approximation to the derivative of the function f(x). 
 



Determine Coefficient using 
Divided Differences

Special standard notation used for divided differences.
First divided difference between x0 and x1

[1]1 0 1 0
0 1 0

1 0 1 0

( ) ( )
[ , ] ( )

f x f x f f
f x x f

x x x x

   
 
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2 1

[ , ] ( )
f f
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x x

 
 [ , ] t s

s t
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Second divided difference between x0, x1 and x2

[2]1 2 0 1
0 1 2 0

2 0

[ , ] [ , ]
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f x x x f

x x

 


a shorter version

[ ]1 2 0 1 1
0 1 0

0

[ , ,..., ] [ , ,..., ]
[ , ,..., ] ( )nn n

n
n

f x x x f x x x
f x x x f

x x
 


n-th order

General 
Expression



Differentiation Based on Newton Basis

Taking the derivative of Pn(x) with respect to x gives
' [1] [2]

0 0 0 1
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Because f(x)=Pn(x)+Error, f’(x)= P’n(x)+Error’.



Error of Interpolation 

Define the error function

which is zero for x=x0, x1, …,xn. Therefore,

To determine g(x), we define an auxiliary function, 
W(t), as

which is zero for t=x and x=x0, x1, …,xn.

( 1)

0 1
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( 1)!
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Take the n+1 order of derivative of W(t) with 
respect to t. There must be a ξ in the interval 
that has x0, xn, or x as endpoint, i.e., ξ between 
(x0, xn, x). Take t=ξ, we have

Therefore, 

According to the error definition, 

we have

0 1( ) ( ) ( ) ( )( ) ( ) ( ) 0n nW t f t P t t x t x t x g x      L
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Error of Interpolation 
• The expression for error is not always useful, because 

the function, f, is unknown. We thus cannot evaluate its 
(n+1)-st derivative.

• However, we can conclude that, if the function is “smooth” 
(the smaller the higher derivative of a function, the 
smoother the function is), the error is small. In line with 
this, a lower-degree polynomial should work satisfactorily. 

• On the other hand, a “rough” function can be expected to 
have larger errors when interpolated.

• We can also conclude that extrapolation will have larger 
errors than for extrapolation, because of the (x-xi) terms.   



Error of Derivative

Error of the approximation to f’(x), when x=x i, is
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Equally Spaced Data
Even though divided difference can handle any table, it is instructive to see how ordinary differences can estimate 

the derivative when a table is evenly spaced.

Denote s=(x-xi)/h, Δfi=fi+1-fi, Δ2fi=Δ(Δfi), and Δnfi=Δ(Δn-1fi), we can write the general form
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When x=xi, s=0. Then the error is 
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Simpler Formulas
The equation of Pn’(s) will becomes substantially simpler, if we 
evaluate it at x=xi, i.e., s=0. 

The error is O(hn), depending on the number of data used for 
the differentiation, i.e., the n value. 



An Example of 2nd-order polynomial

• Three points (xi,fi), (xi+1,fi+1), (xi+2,fi+2)

• 2nd order polynomial 

2

1
2 1 1 1 1 1 1

1

2 2 2 2 1 2 2 1 2

2 1 2
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P x f a
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
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 
      


      


• Three unknowns: ai, ai+1, and ai+2



Evenly Spaced Data

If the three x points are evenly spaced, the 
expression of P2(x) can be simplified.

P2’(x)=



Derivative of Interpolating Polynomial

Exercise:
Derive the forward difference at xi

•f’(xi)=(fi+1-fi)/Δx+O(Δx)
•f’(xi)=(-fi+2+4fi+1-3fi)/(2Δx)+O(Δx2)





MATLAB Implementation
 and Textbook Example 

• Diff(f) is equivalent to Δf.
• A simple forward-difference estimate of the 

derivative is given by diff(f)./diff(x), where f are 
the function values at the n points x.

• Note that if x has length n, diff returns a vector of 
length n-l. 

• “diff” can be nested, so that Δ2f =diff(diff(f)).

• How does the truncation error changes when 
more and more terms are included?

• Does the truncation error matter here?  



Polynomial Wiggle
• Increasing the degree of a polynomial interpolant does not 

necessarily increases the accuracy of the interpolation.

• By definition, the interpolant, F(x) matches the true function 
at the support points. However, one cannot guarantee that 
“between” the support points, F(x) will be a good 
approximation to the true f(x) that generated the support 
points.

• If, for example, f(x) is a known analytical function and the 
size n of the set of support points used to define F(x) is 
allowed to increase (and hence increase the degree of the 
polynomial F(x)), the interpolant will likely tend to oscillate 
between the support points.

• This polynomial wiggle can occur even when the true f(x) is 
smooth. 



• Solid line: 

• Interpolation
• Dashed line: 

• Extrapolation

• The variation between data is OK when polynomials are constructed for up to six 
data.

• Interpolation error however increases afterward, and becomes so huge in the end 
that the interpolating polynomial has nothing in common compared to the 
characteristic revealed by data. 

• The polynomial wiggle make appearance of higher-order polynomials unacceptable 
for data interpolation. 



Piecewise Polynomial Interpolation
• Interpolation with piecewise polynomials provides a practical 

solution to the shortcoming of high-degree polynomial 
interpolation.

• Instead of approximating the function by passing a single 
interpolant through a large number of support points, 
piecewise polynomial interpolation uses a set of lower 
degree interpolants, each of which is defined on a subinterval 
of the whole domain.

• The joints between adjacent piecewise interpolants are 
called the breakpoints, or knots.

• The use of piecewise functions introduces new features to 
the interpolant.

• The relation between adjacent piecewise functions is of 
fundamental importance.



The shape of adjacent interpolants is affected by constraints on 
the continuity of the interpolants and its derivatives at the 
breakpoints.

Four piece-wise linear 
functions; functions 
continuous but derivatives 
discontinuous at knots 

Two adjacent quadratic 
interpolants; functions 
continuous but derivatives 
discontinuous at knots 

Two adjacent quadratic 
interpolants; functions and 
derivatives continuous at 
knots (cubic spline) 



• Change of notations
For the piecewise polynomial interpolation, Pi(x) will designate a polynomial defined n the i-th segment of 

a piecewise continuous curve. The i-th segment is delimited by xi≤x ≤xi+1.  

• Computational tasks
– The overall computing is still to first construct and then evaluate the interpolant.
– Since the piecewise interpolant is not global (i.e., not a single function for all support points), the 

appropriate subinterval must be located before the interpolation function is evaluate.
– The tasks required to perform a piecewise interpolation at a point x are:

• Location x in the set of support points (xi,yi), i=1,…,n

• Compute the coefficients of the local interpolating polynomial defined for the appropriate 
support points  

• Evaluate the local interpolating polynomial
– If the piecewise interpolants have continuity of first and higher derivatives, then adjacent 

interpolants may be coupled. Thus, although the individual interpolants are local, by virtual of being 
connected to each other at the breakpoints, they exhibits some global behavior.



Piecewise-Linear Interpolation
• The simplest piecewise interpolation scheme: use linear 

interpolants between each successive pair of 
breakpoints.

• Exercise: Consider interpolation to find the value of y at 
x=0.75 for the dataset below:

   x     0.2         0.6        1.0      1.4

   y   0.5535  1.0173  1.0389 0.8911
• The only complication in implementing piecewise-linear 

interpolation is in determining the appropriate pair of 
support points for use in constructing the interpolant.

• The search of support points can be done by using 
incremental search or binary search methods.



Piecewise-Cubic Hermite Interpolation

• It would be logical to follow the presentation of 
piecewise-linear interpolation with a 
piecewise-quadratic interpolation. 

• However, in practice, he advantage of 
piecewise-quadratic functions over piecewise-linear 
functions are not compelling.

• For the purpose of interpolating known data, 
piecewise-cubic functions are much more useful.

• There are two different types of piecewise-cubic 
interpolating functions: Hermite polynomials and cubic 
splines



Piecewise-Cubic Hermite Interpolation

Hermite polynomials are required to agree with 
the functions and its first derivative at each of 
the support points. 



If the cubic form of Pi(x) is written as
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Piecewise-Cubic Hermite Interpolation
• The Hermite polynomials have the following two desirable 

properties:
– The segments of the piecewise Hermite polynomials have continuous first 

derivative at the support points.

– The shape of the function being interpolated is better matched, because 
the tangent of this function and the tangent of the Hermite polynomial 
agree at the support points.

• Because interpolating Hermite polynomials requires values of 
both y=f(x) and f’(x), they are better suited to interpolation of 
analytical functions that discrete data, say, from an experiment.

• For the interpolation of discrete data wit unknown f’(x), splines 
are recommended.

• Questions: if the function is known, why do we need to 
interpolate the function?



Purpose of Interpolation

• Plotting a smooth curve through discrete 
data points

• Reading the lines of a table

• Differentiating or integrating tabular data

• Evaluating a mathematical function quickly 
and easily

• Replacing a complicated function by a 
simple one



Cubic Spline Interpolation

• A spline is a piecewise polynomial of degree k that is continuously differentiable k-1 time.

• Each Pi(x) is a cubic polynomial, and at each breakpoint, the P i(x), Pi’(x), and Pi’’(x) are 
continuous.

• By requiring continuous Pi’’(x), the cubic spline avoids the need to specify the value of f’(x).

• This however requires solving a system of linear equation.  



Knows and Unknows
• For n data pairs, there are n-1 piecewise-cubic 

polynomials. The number of unknown is 4(n-1), because 
each polynomial has four unknowns.

• Since each of the n-1 polynomials must match the 2 given 
y values at the breakpoints of its segment, we have 2(n-1) 
constraints.

• Since it is required that the first derivative is continuous for 
the interior points, we have (n-2) constraints.

• Since it is required that the second derivative is continuous 
for the interior points, we have (n-2) constraints.

• We therefore have 4n-6 constraints, and need two more!



A Simple Example

• We have three data pairs (t1,y1), (t2,y2), 
and (t3,y3).

• We want to build two cubic splines in the 
intervals of [t1,x2] and [t2,x3].

• For simplicity, let’s use the monomial basis



The Two Constraints

• Fixed-slope end condition: Specify the first 
derivative at the two end points, based either 
on desired boundary conditions (e.g., f’(x)=0) 
or on estimates of the derivative from the data.

• “Natural” end condition: force the second 
derivative to be zero at the endpoints, 

• Not-a-knot condition: require continuity of 
P’’’(x) at the first interval knots at x2 and xn-1.



The not-a-knot end 
conditions are the 
most accurate end 
conditions when 
information on the 
slope of the spline 
at the end points is 
not known.



MATLAB Built-in Functions

• Interp1/interp2/interp3: One/two/three-dimensional 
interpolation with piecewise polynomials

• interpft: one-dimensional interpolation of uniformly 
spaced data using Fourier series

• interpn: n-dimensional extension of methods used 
by interp3

• spline: one-dimensional interpolation with 
cubic-splines using not-a-knot or fixed-slope end 
conditons.   



Why Numerical Integration?

• The integrand f(x) may be known only at certain points, such as 
obtained by sampling. 

• The integrant f(x) may be known, but it may be difficult or impossible 
to find an analytical expression of the integration. In other words, a 
closed-form expression for the integration involving elementary 
functions (not other integrals) cannot be found. An example of such 
an integrand is f(x) = exp(−x2) when evaluating the error function.

• The analytical expression is available, but it may be easier to 
compute a numerical approximation than to compute the analytical 
expression, such as infinite series or product, or if its evaluation 
requires a special function which is not available.

Estimate the area S numerically.



Numerical Integration

• A large class of numerical integration methods can be 
derived by constructing interpolating functions which are 
easy to integrate. 

• Typically these interpolating functions are polynomials.
• Interpolation with polynomials evaluated at equally-spaced 

points in yields the Newton–Cotes formulas.  
– Rectangular rule (zero-order)
– Trapezoidal rule (first-order) 
– Simpson rule (second- and third-order)

• If we allow the intervals between interpolation points to 
vary, we find another group of quadrature formulas, such 
as the Gaussian quadrature formulas. 



Basic Ideas and Nomenclature

• Numerical integration is also called numerical 
quadrature. 

• The term quadrature originally referred to the 
process determining the dimension of a square 
having the same area as other planar shape.

• This suggests a basic computational strategy of 
numerical integration: 
– To evaluate an integration, approximate the curve 

y=f(x) with a simple function that is easy to integrate;
– The area under the simple curve is approximately 

equal to the area under f(x).



Basic Ideas and Nomenclature

• The figure shows a piecewise-linear approximation to a 
function.

• The area under this approximation can be computed by 
summing the areas of the trapezoidal regions between the 
piecewise approximation and the x-axis.

• Polynomials are very easy to integrate, and theory of 
polynomial interpolation is well understood.

• Most numerical integration schemes involve constructing a 
polynomial interplant to f(x0 and then integrate the interpolant 
to obtain an approximation to the integral of f(x).



• A global interval [a,b] is divided into N panels.
• On each panel, a relatively low-degree polynomial approximation to f(x) 

is created.
• Integrating the polynomial approximation in the panel gives what is called 

a basic rule. A basic rule involves just enough (x,f(x)) pairs to define one 
segment of the piecewise polynomial.

• Applying the basic rule to each of the N panels and adding together the 
results gives what is called a composite rule or an extended rule. 



• The location and number of the nodes within a panel determine many important 
characteristics of the basic rule.

• When the nodes are equally spaced, the resulting integration formulas are known as 
Newton-Cotes rules.

• In Contrast, Gaussian quadrature rules use nodes chosen as the zeros of orthogonal 
polynomials.

• Gaussian quadrature rules have a much smaller truncation error than the corresponding 
Newton-Cotes rules using the same number of nodes.

• Although the Gaussian quadrature rules are more complex to derive, they are not 
significantly harder to implement in a program.



Rectangular Rule

• The simplest approach to numerically integrating 
a function f over [a,b] is to divide the interval into 
n subdivisions of equal width, Δx=(b-a)/n and 
approximate f in each interval.

• The simplest method of this type is to let the 
interpolating function be a constant function (a 
polynomial of order zero) which passes through 
the point ((xi+xi+1)/2, f((xi+xi+1)/2)). 
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Composite Trapezoidal Rule

If the interval [a,b] is subdivided into n subintervals of size 
Δx, then, over the whole interval, the trapezoidal rule gives

Trapezoidal rule: for each interval Δx

The formula is beautifully simple, and it can be applied to 
both equally spaced or non-equally spaced points.

Composite trapezoidal rule:
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Derive Trapezoidal Rule Using 
Newton-Cotes Formulas

• Newton-Cotes formulas: integrate the 
interpolating polynomial for equally spaced 
points.

• Trapezoidal rule is to approximate the function in 
each interval by a linear segment.

• The interpolating polynomial is of the first order. 

You can use the same technique for higher order polynomials



Local Error and Global Error

• Truncation errors have an important role in numerical
– Local error for each interval
– Global error for the entire interval

• The truncation error of a quadrature rule can be measured by applying it to 
an integral that has a known analytical formula. 

• Theoretical formulas for the truncation error are also available from 
numerical analysis.

• Theoretical formulas show that the truncation error for each method 
decreases in a precise way as the number of nodes used in the integration is 
increased.

• If we found the limiting value of the sum as the widths of the intervals 
approach zero, we would have the exact value of the integral.

• Comparing the measured error with the theoretical formula for the error 
allows for the verification of the code implementing a numerical integration 
method.



Local Error of a Single Subinterval

Second-order polynomial

First-order polynomial
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The local error is O(Δx3)

The error is given by (Δx2/2)(s)(s-1)f’’(ξ), where ξ is some point in the interval (x0,x1). 



Global Error of the Entire Interval

Each ξi is found in the n successive subinterval. If we 
assume that f’’(x) is continuous on (a,b), there is 
some value of x in (a,b) – say x=ξ – at which the 
value of the sum is equal to n f’’(ξ), then 
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This explains why the numerical integral becomes more 
accurate when the width of the subinterval becomes smaller.
The global error is larger than the local error.



Exercise
• Calculate the analytical solution of
• Use the trapezoidal rule to calculate

Take the width of each subinterval as 0.2.
• Calculate the exact error.
• Analyze the global error, and compare it with the exact 

error.
• Use the Simpson’s 1/3 rule with 2, 4, 6, … panels, until 

the numerical integration converge to the three 
decimal places.

• Apply the Simpson’s 3/8 rule with 3, 6, 9,…panels, 
until the numerical integration converge to the three 
decimal places.

3.4

1.8

xe dx



Simpson’s Rules
• Apply the Newton-Cotes formulas to the 

second- and third-order interpolating 
polynomials.

• Simpson’s 1/3 rule (O(Δx5))

• Composite formulas (O(Δx4))

Because the method uses pairs of panels, the number of 
panels (subintervals) must be even.



Simpson’s Rules

• Apply the Newton-Cotes formulas to the 
third-order interpolating polynomial gives 
the Simpson’s 3/8 rule (O(Δx5)).

• Adding the extra point into the formula 
does not increase the order of accuracy of 
the approximation.



Trapezoidal rule approximation

Simpson rule approximation



Exercise
• Calculate the analytical solution of
• Use the trapezoidal rule to calculate

Take the width of each subinterval as 0.2.
• Calculate the exact error.
• Analyze the global error, and compare it with the exact 

error.
• Use the Simpson’s 1/3 rule with 2, 4, 6, … panels, until 

the numerical integration converge to the three 
decimal places.

• Apply the Simpson’s 3/8 rule with 3, 6, 9,…panels, 
until the numerical integration converge to the three 
decimal places.
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Velocity Distribution

• Laminar flow

Still parabolic, but the maximum is at the 
surface 

• Turbulent flow

Logarithmic 

kr is a channel roughness parameter
Gives u distribution in z direction 



Mean Velocity
Mean velocity in a channel is the sum, or integral, of the 
velocity at each point in a cross-section divided by the 
cross-sectional area:

If the channel is wide and rectangular, then we can 
reasonably assume that the velocity is the same at each 
point across the channel. In this case integrating across 
the channel is equivalent to multiplying by channel width 



Gaussian Quadrature

• In the Newton-Cotes methods, the xi values are 
predetermined before the numerical integration.

• The general form is

• Gauss observed if we remove the requirement that the 
function be evaluated at predetermined x-values, a 
three-term formula will contain six parameters (the three 
x-values are now unknown, plus three weights) and should 
correspond to an interpolating polynomial of degree 5. 

• It can be applied only when f(x) is known explicitly so that 
f(x) can be evaluated at any desired value of x.
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• We have n points of xi

• We have n real coefficients
• 2n unknowns can be used to exactly interpolate and integrate polynomials of 

degree up to 2n-1.

Gaussian Quadrature:



Gaussian Quadrature
• To simplify the calculations, we will evaluate the integrals over the 

interval [-1 1].
• A simple case: two-term formulas with four unknowns

should correspond to an interpolating polynomial of degree 3, including 
f(x)=x3, f(x)=x2, f(x)=x, and f(x)=1. Assume the function is a cubic 
polynomial: f(x)=a0+a1x+a2x2+a3x3. 

This implies that:
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Since the coefficients of a are arbitrary, the terms in parenthesis must be 
zero. 

Determine the one-term Gaussian Quadrature formulas
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General Expression

• If the limits are [a,b] rather than [-1,1], then 
it is necessary to use the linear 
transformation 

t= [(b-a)x+b+a]/2, dt = [(b-a)/2]dx

General Expression

=



Exercise

Use the two-term Gaussian quadrature formulas to evaluate

Divide the domain into two panels (use equal size for 
convenience), and use the two-term Gaussian quadrature 
formulas in each panel to evaluate the integral.
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