
User Manual

http://people.sc.fsu.edu/∼jburkardt/presentations/cvt uman.pdf
..........

John Burkardt

February 2, 2024

1 Introduction

In this chapter, we present a library of routines that implement the Centroidal Voronoi Tessellation algorithm.
The library is written in FORTRAN 90 (“F90”). It is intended to allow a user to define the geometry of a
problem, carry out the CVT algorithm to determine generator points, and to collect data about the moments
of the resulting Voronoi cells.

The user must prepare a calling program that specifies parameter values, calls the library routines in an
appropriate order, and saves the desired output to files. One of the major tasks for the user is defining the
geometry of the region to be analyzed. This task is simplified, however, if the user already has a DIATOM
input deck, because the library has an interface with DIATOM, and can be instructed to have DIATOM
read that deck and participate in the analysis of the region.

A sample version of a calling program and a DIATOM input deck will be briefly described below, and
may be the quickest way of understanding how the library is intended to work. Further guidance will be
provided on the purpose of the individual routines that make up the library, and the meaning of the program
parameters of user interest.

2 User Control

The current version of the code includes a great deal of flexibility for the user. The user can specify the
problem in several ways, and modify the way the CVT algorithm is carried out. In many cases, a great deal
of programming is available, which the user can access by simply setting a switch or a parameter.

The most critical information that the code needs is the geometry of the region. The user must specify
NDIM, the spatial dimension of the region, and BOX MIN and BOX MAX, the size of a bounding box
that contains the region. The code also must be able to query the region, that is, find out whether a given
point is in the region. By choosing the value of USE DIATOM, the user may specify that inquiries about
the region will be passed, via DIATOM POINT TEST2, to DIATOM, which will then access the user’s
DIATOM geometry input file, or that queries will be handled directly by an appropriately modified version
of the example routine TEST REGION.

For the CVT iteration, the user may specify how the generators are initialized by setting RAN-
DOM GENERATOR. The user then calls the CVT iteration step routine a number of times, with control
returning to the user after each step. In the sample main program, the iteration is simply carried out
MAXIT times, with no other iteration control.

The CVT iteration requires the random sampling of the region. The user may specify the value of
NS CVT, the number of sampling points per Voronoi generator.

As part of the CVT iteration, a nearest neighbor calculation is carried out. For problems with a large
number of generator points, this calculation can dominate the problem execution time. In such cases, the
code offers an alternative method to the naive nearest neighbor calculation, using bins. The user can try out

1

this option by setting USE BINS, and then specifying in the NBINS array the number of bins to use in
each dimension.

Once the CVT iteration is completed, the moments are calculated, again using random sampling. The
user may specify the value of NS MOM, the number of sampling points per Voronoi generator, to control
the accuracy of this calculation.

3 The Overall Structure of the Code

The information that comprises a complete running version of the code can be divided into five logical groups.
The first portion of the code is the master routine, a user main program which defines parameters, sets

up data structures, calls library routines to carry out the algorithm, and writes out important data.
The second portion of the code is the CVT library. This comprises a number of F90 routines that carry

out the CVT algorithm. Many of these routines have optional switches that the user can set, in order to
vary the nature of the algorithm.

The third portion of the code is DIATOM, a library of routines in C and FORTRAN, supplied by
Sandia.

The fourth portion of the code comprises two interface routines, both of which are written in C, and
currently included in the DIATOM library. The first routine, DIATOM SETUP, causes a DIATOM
input file to be read and stored in the DIATOM geometry structure. This routine currently forces the ge-
ometry to be 3D, rectilinear, and contained in the bounding box [0,100] by [0,100] by [0,20]. It would be much
preferable to have these choices made by the user and passed from the main program to DIATOM SETUP
as arguments. However, it was thought unnecessary to refine this interface with the current experimental
version of the code. The second routine, DIATOM POINT TEST2 allows the CVT routines to query
the physical region stored in DIATOM, with a response of +1, -1, or 0 depending on whether the point is
inside, on the boundary, or outside the region.

The fifth portion of the code is simply a DIATOM input file that defines the geometry of the region
of interest. In order to have DIATOM read this file, the main program must call the interface routine
DIATOM SETUP. As currently written, DIATOM expects the input file to have the name diatom test.in,
another hardwired feature that would be made more flexible in a production version of the program.

4 The Main Program

We present here a schematic version of a main program, emphasizing the input and output variables of
primary interest to the user, and the order in which the CVT library routines should be called. Later
sections of this report list the definitions of all the variables of interest to the user, and the purpose of the
various subroutines.

For clarity, we suppress the display of less important data and routines, particularly those used for bin
searches. For a full working example, refer to the main program included with the code distribution. For
an explanation of the purpose of the individual subroutines invoked here, see the section which discusses
the library subroutines. For an explanation of the meaning and purpose of the variables, see the section
containing the variable glossary.

integer, parameter :: n = 256

integer, parameter :: ndim = 3

real, dimension (ndim) :: box_min = (/ 0.0, 0.0, 0.0 /)

real, dimension (ndim) :: box_max = (/ 100.0, 100.0, 5.0 /)

integer, parameter :: maxit = 10

integer, parameter :: ns_cvt = 5000

2

integer, parameter :: ns_mom = 5000

logical, parameter :: use_bins = .false.

logical, parameter :: use_diatom = .true.

double precision cell_centroid(ndim,n)

double precision cell_generator(ndim,n)

double precision cell_moment(ndim,ndim,n)

double precision cell_volume(n)

! Initialize DIATOM.

call diatom_setup ()

! Set initial estimate of cell generators.

call generator_init (ndim, box_min, box_max, n, cell_generator, &

use_diatom, ...)

! Carry out the CVT iteration.

do it = 1, maxit

call cvt_iteration (ndim, box_min, box_max, n, cell_generator, ns_cvt, &

use_diatom, use_bins, ...)

end do

! Compute moments.

call vcm (ndim, box_min, box_max, n, cell_generator, ns_mom, use_diatom, &

use_bins, ..., cell_volume, cell_centroid, cell_moment)

end

5 The DIATOM Geometry File

If, in the main program, the user sets the logical parameter USE DIATOM to TRUE, and calls DI-
ATOM SETUP before the CVT routines are invoked, then the code will expect the region to be defined
by a DIATOM input file.

The general structure of such input files is outside the scope of this report. However, we display below the
3D version of the DIATOM test region, which is the union of a box and a cylindrical shell. The DIATOM
input file is simply:

diatom

package ’box’

density 1

insert box

p1 = 45,35,0

p2 = 55,90,20

3

endinsert

endpackage

package ’cylinder’

density 1

insert cylinder

ce1 = 50,0,0

ce2 = 50,0,20

r = 40

ri = 30

endinsert

endpackage

6 Library Subroutines

Another way of looking at the code is to consider how control passes from one routine to another and back,
as the algorithms that make up the computation are carried out. Starting with the user’s main program, we
will look at the more interesting routines that are called.

Note that we will not delve any further into DIATOM beyond the two interface routines, and that the
nearest neighbor bin routine includes a 2D version, and many lower level routines that will not be considered
here.

6.1 The User Main Program

The user main program “MAIN” is responsible for setting parameters, defining data, calling and controlling
the library routines, and processing output of interest to the user. It generally calls the following set of
routines:

� RANDOM INITIALIZE initializes the F90 random number seed.

� DIATOM SETUP initializes DIATOM and reads the input file.

� GENERATOR INIT initializes the Voronoi cell generators.

� CVT ITERATION takes one step of the CVT iteration.

� VCM calculates Voronoi cell volumes, centroids and second moments.

If bins are to be used for the nearest neighbor calculation, then MAIN will also need to preprocess the
generator points after they are initialized and whenever they are adjusted. (See chapter 1 for details on the
nearest neighbor algorithm, listed as Algorithm 5). The master routine for this operation is:

� BIN PREPROCESS controls the bin preprocessing step.

BIN PREPROCESS calls the appropriate routines to set up the auxilliary data structures required.
For the 3D case, these routines are:

� D3VEC BIN EVEN3 places the elements of an array of 3D vectors into evenly spaced bins.

� D3VEC BINNED REORDER2 reorders the elements of an array by bin;

� D3VEC BINNED SORT A2 sorts the elements within each bin.

There is a corresponding set for 2D problems. These routines, in turn, call many lower level routines which
will not be discussed here.

4

6.2 The CVT algorithm

The CVT calculation, listed as Algorithm 3 in Chapter 1, is embodied in the routines GENERATOR INIT
and CVT ITERATION.

GENERATOR INIT uses sampling to produce a set of N points to be used as initial values for the
generators, and calls

� REGION SAMPLER produces a random point X in the region.

CVT ITERATION is called repeatedly to apply one step of the probabilistic Lloyd’s method. To do
so, it calls the routine:

� REGION SAMPLER produces a random point X in the region.

and then, to find the nearest generator to the point X, it calls one of the following two routines:

� FIND CLOSEST uses a naive algorithm.

� POINTS NEAREST POINT BINS3 3D uses bins.

6.3 The Moment Calculation

The calculation of volumes, centers of mass, and second moments, listed as Algorithm 6 in Chapter 1, is
done by VCM, which uses sampling to estimate the integrals in the definitions of these quantities. It calls
the routine:

� REGION SAMPLER produces a random point X in the region.

and then, to find the nearest generator to the point X, it calls one of the following two routines:

� FIND CLOSEST uses a naive algorithm.

� POINTS NEAREST POINT BINS3 3D uses bins.

6.4 Sampling

A recurring task in the code is the sampling of the region, carried out by Algorithm 4, as described in
Chapter 1. Sampling is done by choosing a random point in the bounding box and determining if the point
lies within the physical region.

The routine REGION SAMPLER supervises the sampling procedure. A random point within the
bounding box is chosen by calling either the F90 routine RANDOM NUMBER, or the Halton routine
I TO HALTON VECTOR. Then the point is tested to determine whether it is within the physical region,
by calling either TEST REGION or DIATOM POINT TEST2. The generation and testing process is
repeated, if necessary, until the sampling routine can return a suitable point.

Depending on the user options, REGION SAMPLER calls one of:

� RANDOM NUMBER, the F90 uniform random number generator,

� I TO HALTON VECTOR computes an element of a vector Halton sequence.

and then, depending on the value of USE DIATOM, the point is tested by calling one of:

� TEST REGION determines if a point is within a region defined by formulas.

� DIATOM POINT TEST2 determines if a point is within a region defined by DIATOM input.

5

6.5 Nearest Neighbor

Given a point X in the region, and the current set of CVT generators, both CVT ITERATION and VCM
need to determine the generator that is nearest to X. The user’s choice of USE BINS determines which of
the following routines is called:

� FIND CLOSEST finds the nearest generator to X, naively.

� POINTS NEAREST POINT BINS3 3D finds the nearest generator to X, using bins.

POINTS NEAREST POINT BINS3 3D is an implementation of Algorithm 5.
Note that, if bins are to be used, a preprocessing step must be carried out by the user main program,

and certain auxilliary bin data must be passed to the routine carrying out the nearest neighbor calculation.
The required data structures and preprocessing calls for the bin approach can be determined by examining
the sample calling program. The bin preprocessing and computation routines call some lower level routines
which will not be discussed here.

7 Variable Glossary

In the following tables, we give the names and meanings of various program variables that may be of interest
to a user of the program.

7.1 Geometric Variables

The geometric variables are used to define the physical region being analyzed. The user must provide the
spatial dimension, a rectangular box surrounding the region, and indicate whether DIATOM is to be used.

Name Description

NDIM integer, the spatial dimension, which should be 2 or 3.
BOX MIN double precision (NDIM), the minimum coordinates of the bound-

ing box.
BOX MAX double precision (NDIM), the maximum coordinates of the bound-

ing box.
USE DIATOM logical, is TRUE if DIATOM is to be called to determine whether

a point lies in the physical region; if it is FALSE than a user-
supplied subroutine TEST REGION is called.

DR double precision, a tolerance used by DIATOM when testing
whether a point is within, outside of, or on the boundary of the
physical region. This is typically a very small value, of the order
of 10−5 or smaller.

7.2 CVT Algorithm Variables

The CVT algorithm variables specify the number of generators, how they are initialized, how the sampling
steps are carried out, and how many steps are to be taken. Once the CVT algorithm is completed, the CVT
generators are known.

6

Name Description

N integer, the number of Voronoi cells to generate. The sample prob-
lem uses a value of 256.

MAXIT integer, the maximum number of correction iterations used in the
CVT calculation. A typical value is 100.

NS CVT integer, the average number of sampling points tested per Voronoi
cell, on each step of the CVT iteration. A typical value is 5000.

RANDOM GENERATOR integer, specifies how the Voronoi cell generators are to be initial-
ized. 0: use the F90 RANDOM NUMBER routine; 1: use the
sequence (PREFERRED).

CELL GENERATOR double precision (NDIM,N), the CVT generator points. This is the
output quantity of most interest.

7.3 Moment Calculation Variables

The moment calculation follows the determination of the CVT generators. It also uses a sampling method;
in particular, the same value of NS is used to determine the number of sampling points. This calculation
produces the values of the cell volumes, centroids, and second moments.

Name Description
NS MOM integer, the average number of sampling points tested per Voronoi

cell for the moment calculations. A typical value is 5000.
REGION VOLUME GIVEN logical, TRUE: the region volume is input in REGION VOLUME.

FALSE: the region volume must be approximated.
REGION VOLUME double precision, the volume of the region. If RE-

GION VOLUME GIVEN is TRUE, then REGION VOLUME is
input by the user. Otherwise, REGION VOLUME is approximated
computationally.

CELL VOLUME double precision (N), the volume of the Voronoi cells.
CELL CENTROID double precision (NDIM,N), the centroids of the Voronoi cells.
CELL MOMENT double precision (NDIM,NDIM,N), the second moments of the

Voronoi cells.

7.4 Nearest Neighbor Variables

If efficiency is an issue, the sampling method may be speeded up by using bins to group the generators. The
coding for this procedure is somewhat complicated. However, to use bins, it is only necessary to specify
USE BINS to be TRUE, to choose appropriate values NBIN for the number of bins in each dimension,
and to call the appropriate routines, as presented in the sample calling program. The other quantities are
computed automatically.

7

Name Description

USE BINS logical, is TRUE if the bounding box is to be divided up into bins
to speed up the nearest neighbor search; FALSE if the nearest
neighbor seach is to be done naively.

NBIN integer(3), the number of bins to use in each direction. For 2D
problems, set NBIN(3) = 1. For efficiency, these values should be
set in such a way that the bins are nearly square or cubical.

BIN START integer (NBIN(1),NBIN(2),NBIN(3)), the index of the first cell cen-
ter in the bin, or -1 if none.

BIN LAST integer (NBIN(1),NBIN(2),NBIN(3)), the index of the last cell cen-
ter in the bin, or -1 if none.

BIN NEXT integer(N), the index of the next cell center in the bin containing
this cell center.

8 Miscellaneous

The CVT library is written in FORTRAN 90.
Floating point quantities are declared DOUBLE PRECISION. The DIATOM library declares floating

point quantities using the symbolic type REAL, which we currently have set to “double”. The F90 code
and DIATOM must always agree in this way on the size of floating point values.

UNIX FORTRAN compilers have a tradition of storing FORTRAN symbolic names with an appended
underscore. C compilers do not do this. So if a FORTRAN routine wants to call a C procedure named “solve”,
a problem arises, because the FORTRAN compiler will, by default, convert this into a call to “solve ”. Most
FORTRAN compilers have a way of requesting that underscores not be appended to symbolic names during
compilation, and this was necessary in the development of the CVT library, in order to interface with
DIATOM.

Another issue is the difference in the default handling of the arguments of a procedure in FORTRAN
and C. The interface routine DIATOM POINT TEST, supplied by Sandia, had a call by value. This is
the reason that a revised version, called DIATOM POINT TEST2 and using call by address, had to be
written, for use as an interface between the F90 CVT library and DIATOM.

During development of the code, CPU and real time measurements were made. There is an F90 standard
routine called CPU TIME for CPU time measurement. The implementation of this routine on the DEC
Alpha was unreliable for CPU times that were more than about 30 minutes. Apparently, an internal integer
would wrap around, resulting in negative CPU time intervals. Hence, CPU timings were also done with
the UNIX routine ETIME. However, because the compiler was instructed not to append an underscore
to symbolic names, but the compiled version of ETIME actually has an underscore, the calls to ETIME
had to be explicitly made to ETIME . Real time measurements were made by calls to the F90 routine
SYSTEM CLOCK, for which wrap-around problems did not seem to arise.

DIATOM has some internal source code settings that specify the spatial dimension, bounding box, and
geometry type. These quantities are currently hard-wired in DIATOM SETUP. This means that a user
may have to enter certain information in two places in order to get a correct run. A proper approach would
allow the user to choose these values in the main program and pass them to DIATOM SETUP by its
argument list, avoiding the possibility of a catastrophic disagreement in problem definition.

8

