
3: Parallel Programming Concepts

John Burkardt
Information Technology Department

Virginia Tech
..........

FDI Summer Track V:
Parallel Programming

..........
https://people.sc.fsu.edu/∼jburkardt/presentations/...

parallel 2008 vt.pdf

10-12 June 2008

1 / 1

Parallel Programming Concepts

2 / 1

Parallel Programming Concepts

The difference between 1,000 workers working on 1,000 projects, and
1,000 workers working on 1 project is organization and communication.

The key idea of parallel programming:

Independent agents, properly organized and able to communi-
cate, can cooperate on one task.

3 / 1

Grand Challenge Problems

Why do we need parallel programming?

One answer is Paris Hilton’s motto:
Too much is never enough!

A more dignified answer is our pursuit of Grand Challenge Problems,
fundamental problems in science and engineering whose solution is just
becoming imaginable or practical with the highest performance
computing resources.

4 / 1

Grand Challenge Problems

Weather prediction

Climate Modelling

Design of pharmaceutical drugs

Protein folding

Human genome

Oil recovery

Subsurface water flow

Simulation of turbulent flow

Superconductivity

Quantum Chromodynamics

Astronomical simulation

Analysis of combustion

Nuclear fusion

5 / 1

Grand Challenge Problems

Grand Challenge Hardware

memory - massive, with levels and multiple paths

processors - more of them, and more power on each one

communication - faster

6 / 1

Grand Challenge Problems

Grand Challenge Software

new languages or extensions to old languages

smarter compilers or smarter software

numerical libraries

user codes

algorithms

7 / 1

Types of Parallel Processing

There are many classifications of parallel processing.
The useful distinction for us:

shared memory, embodied in OpenMP.

distributed memory, embodied in MPI.

8 / 1

Shared Memory - Multiple Processors

The latest CPU’s are called dual core and quad core, with rapid increases
to 8 and 64 cores to be expected.

The cores share the memory on the chip.

A single program can use all the cores for a computation.

It may be confusing, but we’ll refer to a core as a processor.

9 / 1

Shared Memory - Multiple Processors

If your laptop has a dual core or quad core processor, then you will see a
speedup on many things, simply because the operating system can run
different tasks on each core.

When you write a program to run on your laptop, though, it probably will
not automatically benefit from multiple cores.

10 / 1

Shared Memory - Multiple Processors

11 / 1

Shared Memory - Multiple Local Memories

The diagram of the Intel quad core chip includes several layers of memory
associated with each core.

The full memory of the chip is relatively “far away” from the cores. The
cache contains selected copies of memory data that is expected to be
needed by the core.

Anticipating the core’s memory needs is vital for good performance.
(There are some ways in which a programmer can take advantage of this.)

A headache for the operating system: cache coherence, that is, making
sure the original data is not changed by another processor, which
invalidates the cached copy.

12 / 1

Shared Memory - NUMA Model

It’s easy for cores to share memory on a chip. And each core can reach
any memory item in the same time, known as UMA or “Uniform Access
to Memory”.

Until we get 8 or 16 core processors, we can still extend the shared
memory model, if we are willing to live with NUMA or “Non-Uniform
Access to Memory”.

We arrange several multiprocessor chips on a very high speed connection.
It will now take longer for a core on one chip to access memory on
another chip, but not too much longer, and the operating system makes
everything look like one big memory space.

13 / 1

Shared Memory - NUMA Model

Chips with four cores share local RAM, and have access to RAM on other
chips.

VT’s SGI ALTIX systems use the NUMA model.

14 / 1

Shared Memory - Implications for Programmers

On a shared memory system, the programmer does not have to worry
about distributing the data. It’s all in one place or at least it looks that
way!

A value updated by one core must get back to shared memory before
another core needs it.

Some parallel operations may have parts that only one core at a time
should do (searching for maximum entry in vector).

Parallelism is limited to the number of cores on a chip (2, 4, 8?), or
perhaps the number of cores on a chip multiplied by the number chips in
a very fast local network (4, 8, 16, 64, ...?).

15 / 1

Shared Memory - Implications for Programmers

The standard way of using a shared memory system in parallel involves
OpenMP.

OpenMP allows a user to write a program in C/C++ or Fortran, and
then to mark individual loops or special code sections that can be
executed in parallel.

The user can also indicate that certain variables (especially “temporary”
variables) must be treated in a special way to avoid problems during
parallel execution.

The compiler splits the work among the available processors.

This workshop will include an introduction to OpenMP in a separate
talk.

16 / 1

Shared Memory - Data Conflicts

Here is one example of the problems that can occur when working in
shared memory.

Data conflicts occur when data access by one process interferes with
that of another.

Data conflicts are also called data races or memory contention. In part,
these problems occur because there may be several copies of a single
data item.

If we allow the “master” value of this data to change, the old copies are
out of date, or stale data.

17 / 1

Shared Memory - Data Conflicts

A mild problem occurs when many processes want to read the same item
at the same time. This might cause a slight delay.

A bigger problem occurs when many processes want to bf write or modify
the same item. This can happen when computing the sum of a vector,
for instance. But it’s not hard to tell the processes to cooperate here.

A serious problem occurs when a process does not realize that a data
value has been changed, and therefore makes an incorrect computation.

18 / 1

Data Conflicts: The VECTOR MAX Code

program main

i n t e g e r i , n
double p r e c i s i o n x (1000) , x max

n = 1000

do i = 1 , n
x (i) = rand ()

end do

x max = −1000.0

do i = 1 , n
i f (x max < x (i)) then

x max = x (i)
end i f

end do

stop
end

19 / 1

Shared Memory - Data Conflicts - VECTOR MAX

program main

i n c l u d e ’ omp l i b . h ’

i n t e g e r i , n
double p r e c i s i o n x (1000) , x max

n = 1000

do i = 1 , n
x (i) = rand ()

end do

x max = −1000.0

!$omp p a r a l l e l do
do i = 1 , n

i f (x max < x (i)) then
x max = x (i)

end i f
end do

!$omp end p a r a l l e l

stop
end

20 / 1

Shared Memory - Data Conflicts - VECTOR MAX

It’s hard to believe, but the parallel version of the code is incorrect. In
this version of an OpenMP program, the variable X MAX is shared, that
is, every process has access to it.

Each process will be checking some entries of X independently.

Suppose process P0 is checking entries 1 to 50, and process P1 is
checking entries 51 to 100.

Suppose X(10) is 2, and X(60) is 10000, and all other entries are 1.

21 / 1

Shared Memory - Data Conflicts - VECTOR MAX

Since the two processes are working simultaneously, the following is a
possible history of the computation:

1 X MAX is currently 1.

2 P1 notes that X MAX (=1) is less than X(60) (=10,000).

3 P0 notes that X MAX (=1) is less than X(10) (=2).

4 P1 updates X MAX (=1) to 10,000.

5 P0 updates X MAX (=10,000) to 2.

and of course, the final result X MAX=2 will be wrong!

22 / 1

Shared Memory - Data Conflicts - VECTOR MAX

This simple example has a simple correction, but we’ll wait until the
OpenMP lecture to go into that.

The reason for looking at this problem now is to illustrate the job of the
programmer in a shared memory system.

The programmer must notice points in the program where the processors
could interfere with each other.

The programmer must coordinate calculations to avoid such interference.

23 / 1

Distributed Memory - Multiple Processors

24 / 1

Distributed Memory - Explicit Communication

For several servers to cooperate in a distributed memory system,

the program to run must be copied to each server

certain synchronizations are needed (“all start”, “wait for me”, “all
stop”

some problem data must be divided, some duplicated

programs must be able to “talk” to each other (pass results)

Because communication between servers is much slower than between a
core and its memory, distributed memory computations must limit
communication.

25 / 1

A Simple Approach

1 Divide a big computation into smaller tasks.

2 Give separate tasks to each processor.

3 Gather results (perhaps a single number from each processor) at the
end.

Computations this easy are called embarassingly parallel.

They are characterized by requiring little or no intermediate
communication between processors.

26 / 1

”Embarassingly Parallel” Applications

Estimate the integral of a function by evaluating it at regularly spaced or
random points.

Estimate the evolutionary relationship among several species by
considering all possible evolutionary trees, weighted by their probability.

Search an online database of EMAIL messages for all occurrences of the
phrase “Sell my Enron shares!”

Does some binary string of length N causes a given circuit to produce the
output value of 1? (The circuit satisfiability problem).

27 / 1

Most Applications are NOT Embarrassingly Parallel

Most parallel applications are not easily broken up into almost
independent subtasks.

In domain decomposition problems, a physical region is divided into
subregions, each associated with a processor.

If the program models the flow of heat throughout the region, then at
each boundary between subregions, the associated processors will need to
communicate the updated boundary values.

To sort N numbers between 0 and 1, processor I could sort the I-th part
of the data, then keep the values between I/P and I+1/P, sending the
rest to the others.

28 / 1

Distributed Memory - Programmer Implications

The programmer must distribute data among the processors. What must
everyone have? What big vectors can be broken into separate pieces on
separate processors?

The programmer must arrange for data to move between the processors.

The programmer must distribute the work among the processors.

The programmer must synchronize the execution of the work.

In particular, if one program sends data, the recipient program must be
ready to receive it.

If a program needs data that is not ready, it must be told to wait.

29 / 1

Distributed Memory - Programmer Implications

Parallel programming on distributed memory machines can be
implemented using MPI.

MPI allows the user to write a single program, in C/C++ or Fortran.

The same program will run on all the cooperating processors. Each
processor is given a distinct ID number; this allows it to decide what
parts of the program it must execute.

Separate processors can communicate using their ID numbers.

MPI includes methods of sending and receiving data, synchronizing
execution, and combining results.

This workshop will include an introduction to MPI in a separate talk.

30 / 1

Distributed Memory - Deadlock

As an example, we solve a problem with 100 values x along a line, We
use domain decomposition, and two processes, so process P0 has x(1)
through x(50) and process P1 has x(51) through x(100).

P0 always needs a current copy of x(51), and P1 a copy of x(50).

In MPI, processors communicate using messages.

A user may require that messages are acknowledged to have been
received, before the next command is executed.

A message can only be received if the receiving process is executing the
command ”Receive”. Otherwise, the message waits in some temporary
location.

This can be a recipe for deadlock.

31 / 1

Distributed Memory - Deadlock

===The P0 side==============+====The P1 side============

|

Initialize X(1)...X(50) | Initialize X(51)...X(100).

|

Begin loop | Begin loop

|

Send X(50) to P1 ==>|<== Send X(51) to P0

|

When receipt confirmed,<==|==> When receipt confirmed,

|

Receive X(51) from P1 <==|==> Receive X(50) from P0

|

Update X(1)...X(50). | Update X(51)...X(100).

|

Repeat | Repeat

32 / 1

Conclusion - Don’t Panic!

A mental image of how shared memory systems work is to imagine that a
pair of twins are working on your calculation.

All of the data is written on a whiteboard that both can see.

Whenever the computation involves a loop, one twin does the even
iterations, and one the odd.

During these calculations, each twin can make some private calculations
on a notepad that the other twin doesn’t see.

Each twin can go up to the whiteboard at any time and change numbers
there as the result of a calculation.

33 / 1

Conclusion - Don’t Panic!

An appropriate idea of how distributed memory systems work is to
imagine that you have a program running on a single computer, working
on part of a problem.

Every now and then, instead of printing out the value of some number it
has computed, it “sends” that value to another computer.

Every now and then, instead of reading data from the user, it “receives”
information from another computer.

Except for these occasional chats with other computers, the computation
proceeds as usual.

34 / 1

Conclusion - Don’t Panic!

Parallel programming is a very deep pool, but we can take our time
getting into it!

If you’ve already done some programming, then you can understand the
important fundamentals of shared and distributed memory systems by
simple extensions of what you already know.

Once we see some examples of parallel programs, I hope you will agree
that they are based on simple ideas.

There is really nothing magic going on!

35 / 1

Conclusion - Don’t Panic

36 / 1

