Combined Estimation of Hydrogeologic Scenario, Model, and Parameter Uncertainty with Application to Groundwater Reactive Transport Modeling
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2. Bayesian Network Model Description Figure 2. Bayesian network model structure. Figure 6. Relative contributions of different uncertainty sources to the hydraulic head at location x = 6000
As Fig. 2. shows, each node in the graph represents a random variable, while the edges | Mmeters represented using Bayesian uncertainty tree.
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As shown above, the test case Is built in one dimensional domain (L = 10000 meters) with a S ———
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Figure 1. Hierarchical structure of characterization and quantification of scenario, ynconfln_ed aquifer and prec:lpl_tatlon recharge. A series of single direction chemical reactions Fiqure 8. Relative contributions of different uncertainty sources to the hydraulic head at location x = 6000
model, and parametric uncertainties. Include five reactants are considered in the reactive transport model. meters represented using Bayesian tree.




