
Proceedings of MTNS 2004, Leuven, Belgium

Trust-region methods on Riemannian manifolds with applications

in numerical linear algebra

P.-A. Absil∗† C. G. Baker∗ K. A. Gallivan∗

Abstract

A general scheme for trust-region methods on Riemannian manifolds is
proposed. A truncated conjugate-gradient method is utilized to solve the
trust-region subproblems. The method is illustrated several problems of
numerical linear algebra.
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1 Introduction

Several problems related to numerical linear algebra can be expressed as optimizing a smooth
function on a differentiable manifold. Domains of application include model reduction, princi-
pal component analysis, electronic structure computation and signal processing; see e.g. [LE00]
and [HM94] for details. Early algorithms for solving optimization problems on manifolds were
based on steepest descent; see e.g. [HM94] and references therein. These algorithms have good
global convergence properties but slow (linear) local convergence.

In Rn, it is well known that higher rates of convergence can be achieved by using second-order
information on the cost function. The classical choice is Newton’s method; it plays a central role
in the development of numerical techniques for optimization, because of its simple formulation and
its quadratic convergence properties. The history of Newton’s method on manifolds can be traced
back to Gabay [Gab82] who proposed a formulation for the method on embedded submanifolds of
Rn. Smith [Smi93, Smi94] proposed a formulation of Newton’s method on Riemannian manifolds;
see also the related work by Udrişte [Udr94], Owren and Welfert [OW00], Mahony [Mah96], and
Mahony and Manton [MM02]. However, the pure Newton method converges only locally, and it
cannot distinguish between local minima, local maxima and saddle points.

In classical optimization, several techniques exist to improve the global convergence properties
of Newton’s method. Most of these techniques fall into two categories: line-search methods and
trust-region methods; see e.g. [MS84, NW99]. Line-search techniques have been considered on
Riemannian manifolds by Udrişte [Udr94] and Yang [Yan99]. However, to our knowledge, there
is no mention of Riemannian trust-region methods in the literature. An objective of this paper
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is to fill this gap and to provide a theoretical and algorithmic framework applicable to multiple
problems.

The trust-region approach we propose works along the following lines. First, a retraction R
is chosen on the Riemannian manifold M that defines for any point x ∈ M a one-to-one corre-
spondence Rx between a neighborhood of x in M and a neighborhood of 0x in the tangent space
TxM . Using this retraction, the cost function f on M is lifted to a cost function f̂x = f ◦ Rx

on TxM . Since TxM is an Euclidean space, it is possible to define a quadratic model of f̂x and
adapt classical methods in Rn to compute (in general, approximately) a minimizer of f̂x within a
trust-region around 0x ∈ TxM . This minimizer is then retracted back from TxM to M using the
retraction Rx. This point is a candidate for the new iterate, which will be accepted or rejected
depending on the quality of the agreement between the quadratic model and the function f itself.

The advantages of considering a trust-region method instead of the pure Newton method are
multiple. First, under mild conditions, trust-region schemes are provably convergent to a set
of stationary points of the cost functions, whereas the pure Newton method may cycle without
approaching a set of stationary points. Moreover, the cost function is nonincreasing at each iterate
which favors convergence to a local minimum, while the pure Newton method does not discriminate
between local minima, local maxima and saddle points. Finally, the presence of a trust-region gives
an additional guideline to stop the inner iteration early, hence reducing the computational cost,
while preserving the good convergence properties of the exact scheme.

Another interesting feature of our trust-region scheme is the use of retractions. As in most
other optimization algorithms on Riemannian manifolds, our trust-region scheme first computes an
update vector in the form of a tangent vector to the manifold at the current iterate. The classical
technique (see [Smi94, Udr94, EAS98, Yan99]) then uses the Riemannian exponential mapping
to select the next iterate from the update vector. However, as pointed out by Manton [Man02,
Section IX], the exponential may not be the most appropriate or computationally efficient way of
performing the update. Therefore, we allow the exponential to be replaced by any retraction. Our
convergence analysis shows that, under reasonable conditions, the good properties of the algorithms
are preserved.

The goal of this paper is to succinctly present a general trust-region scheme on Riemannian
manifolds and to state current convergence results. The theory and algorithms can be adapted to
exploit the properties of specific manifolds and problems in several disciplines. More details are
in an expanded version of this paper [ABG04b].

Numerical linear algebra considers several problems that can be analyzed and solved using
this approach. A particularly interesting application concerns the computation of the rightmost
eigenvalue of a symmetric matrix and its associated eigenvector, in which case the manifold under
consideration is the projective space and the cost function can be chosen as a Rayleigh quotient.
The resulting trust-region algorithm can be interpreted as an inexact Rayleigh quotient iteration
and is related to the restarted Lanczos method; we refer to the recent paper [ABG04a] for details.

This paper makes use of basic notions of Riemannian geometry and numerical optimization; all
the necessary background can be found at an introductory level in [dC92] and [NW99]. The general
theory of trust-region methods on Riemannian manifolds is presented in Section 2. Methods for
(approximately) solving the TR subproblems are considered in Section 3. Convergence properties
are investigated in Section 4. The theory is illustrated on practical examples in Section 5. Numerical
experiments are reported on in Section 6. Conclusions are presented in Section 7.
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2 General theory

Let M be a manifold of dimension d. Intuitively, this means that M looks locally like Rd. Local
correspondences between M and Rd are given by coordinate charts φα : Ωα ⊂ M → Rn; see
e.g. [dC92] for details. Let f be a cost function on M and consider the problem of defining a
trust-region method for f on M . Given a current iterate x, it is tempting to choose a coordinate
neighborhood Ωα containing x, translate the problem to Rd through the chart φα, build a quadratic
model m, solve the trust-region problem in Rd and bring back the solution to M through φ−1

α . The
difficulty is that there are in general infinitely many α’s such that x ∈ Ωα. Each choice will yield
a different model function m ◦ φα and a different the trust region {y ∈ M : ‖φα(y)‖ ≤ ∆}, hence a
different next iterate x+.

A way to overcome this difficulty is to associate to each x ∈ M a single coordinate chart. In fact,
it is sufficient to define around each x ∈ M a diffeomorphism with a Euclidean space; a coordinate
chart can then be obtained by choosing an orthonormal basis of the Euclidean space. In what
follows, M will be a (C∞) Riemannian manifold, i.e., M is endowed with a correspondence, called
Riemannian metric, which associates to each point x of M an inner product gx(·, ·) on the tangent
space TxM and which varies differentiably (see [dC92, Chap. 1] for details). The Riemannian metric
induces a norm ‖ξ‖ =

√
gx(ξ, ξ) on the tangent spaces TxM . Also associated with a Riemannian

manifold are the notions of Levi-Civita (or Riemannian) connection ∇, parallel transport, geodesic
(which, intuitively, generalizes the notion of straight line) and associated exponential map defined
by Expxξ = γ(1) where γ is the geodesic satisfying γ(0) = x and γ̇(0) = ξ. We will also assume
that M is complete, which guarantees that Expxξ exists for all x ∈ M and all ξ ∈ TxM . We refer
to [dC92] or [Boo75] for details.

The inverse of the exponential map Expx is a natural candidate for the above-mentioned dif-
feomorphism since Expx is a diffeomorphism between a neighborhood of the zero element 0x in
the Euclidean space TxM and a neighborhood of x in M (see [dC92, Chap. 3, Proposition 2.9]).
From a numerical point of view, however, the exponential may not be the best choice as it may be
expensive to compute. Therefore, it is interesting to consider approximations of the exponential.
Such approximations are required to satisfy at least the properties of a retraction, a concept that
we borrow from [ADM+02] with some modifications.

Definition 2.1 (retraction) A retraction on a manifold M is a mapping R : TM → M with the
following properties. Let Rx denote the restriction of R to TxM .

1. R is continuously differentiable.
2. Rx(0x) = x, where 0x is the zero element of TxM .
3. DRx(0x) = idTxM , the identity mapping on TxM , with the canonical identification T0xTxM '

TxM .

If moreover D2(Exp−1
x ◦Rx)(0x) vanishes, then R is a second-order retraction.

It follows from the inverse function theorem (see [dC92, Chap. 0, Theorem 2.10]) that Rx is a
local diffeomorphism at 0x, namely, Rx is not only C1 but also bijective with differentiable inverse
on a neighborhood V of 0x in TxM . In particular, the exponential mapping is a retraction (see
Proposition 2.9 in [dC92, Chap. 3] and the proof thereof). Several practical examples of retractions
on Riemannian manifolds, that may be more tractable computationally than the exponential, are
given in Section 5.

Our definition of a trust-region algorithm on the Riemannian manifold (M, g) with retraction
R, is based on the following principles. Given a cost function f : M → R and a current iterate
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xk ∈ M , we use R−1
xk

to map the local minimization problem for f on M into a minimization
problem for

f̂xk
: Txk

M → R : ξ 7→ f(Rxk
ξ) (1)

on the tangent space Txk
M . The tangent space is a Euclidean space endowed with the inner product

gxk
(·, ·), which makes it possible to adapt classical techniques in order to solve (approximately) the

trust-region subproblem for the function f̂ , namely

min
η∈Txk

M
mxk

(η) = f̂xk
(0xk

) + Df̂xk
(0xk

)[η] +
1
2
D2f̂xk

(0xk
)[η, η]

= f̂xk
(0xk

) + gxk
(grad f̂xk

(0xk
), η) +

1
2
gxk

(Hessf̂xk
(0xk

)[η], η) s.t. gxk
(η, η) ≤ ∆2

k. (2)

Note that, since DRx(0x) = idTxM , it follows that grad f̂xk
(0x) = grad f(x), where grad f(x), the

gradient of f at x, is defined by gx(grad f(x), ξ) = dfx(ξ), ξ ∈ TxM (see [dC92, Chap. 3, Ex. 8]).
Moreover, if R is a second-order retraction, then Hess f̂xk

(0x) = Hess f(x), where Hess f(x) :
TxM → TxM , the Hessian (linear) operator, is defined by Hess f(x)ξ = ∇ξgrad f(x), ξ ∈ TxM
(see [dC92, Chap. 6, Ex. 11]). The Hessian operator is related to the second tensorial derivative
D2f(x) by D2f(ξ, χ) = ∇χ∇ξf−∇∇χξf = gx(Hess f(x)ξ, χ); see [Lan99, Chap. XIII, Theorem 1.1].

For the global convergence results it is only required that R be a (first-order) retraction and
that the second-order term in the model be some symmetric form. Therefore, instead of (2), we
consider the following more general formulation

min
η∈Txk

M
mxk

(η) = f(xk) + gxk
(grad f(xk), η) +

1
2
gxk

(Hxk
η, η) s.t. gxk

(η, η) ≤ ∆2
k, (3)

where Hxk
: Txk

M → Txk
M is some symmetric linear operator, i.e., gxk

(Hxk
ξ, χ) = gxk

(ξ,Hxk
χ),

ξ, χ ∈ TxM . This is called the trust-region subproblem.
Next, an (approximate) solution ηk of the trust-region subproblem (3) is computed, for example

using a truncated conjugate-gradient method; several other possibilities are mentionned in [CGT00,
Chap. 7]. The method used for computing ηk is called the inner iteration. The candidate for the
new iterate is then given by

x+ = Rxk
(ηk). (4)

The decision to accept or not the candidate and to update the trust-region radius is based on
the quotient

ρk =
f(xk)− f(Rxk

(ηk))
mxk

(0xk
)−mxk

(ηk)
=

f̂xk
(0xk

)− f̂xk
(ηk)

mxk
(0xk

)−mxk
(ηk)

. (5)

If ρk is exceedingly small, then the model is very bad: the step must be rejected and the trust-region
radius must be reduced. If ρk is small but less dramatically so, then the step is accepted but the
trust-region radius is reduced. If ρk is close to 1, then there is a good agreement between the model
and the function over the step, and the trust-region radius can be expanded.

This procedure can be formalized as the following algorithm (see e.g. [NW99] for the classical
case where M is Rn with its canonical metric).

Algorithm 1 (Riemann-TR – RTR) Data: Complete Riemannian manifold (M, g); smooth
scalar field f on M ; retraction R from TM to M as in Definition 2.1.
Parameters: ∆̄ > 0, ∆0 ∈ (0, ∆̄), and ρ′ ∈ [0, 1

4).
Input: initial iterate x0 ∈ M .
Output: sequence of iterates {xk}.
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for k = 0, 1, 2, . . .
Obtain ηk by (approximately) solving (3);
Evaluate ρk from (5);
if ρk < 1

4
∆k+1 = 1

4∆k

else if ρk > 3
4 and ‖ηk‖ = ∆k

∆k+1 = min(2∆k, ∆̄)
else

∆k+1 = ∆k;
if ρk > ρ′

xk+1 = Rxηk

else
xk+1 = xk;

end (for).

This algorithm admits several variations and extensions; see e.g. [CGT00, Chap. 10].

3 Computing a trust-region step

The use of a retraction has made it possible to express the trust-region subproblem in the Euclidean
space TxM . Therefore, all the classical methods for solving the trust-region subproblem can be
applied. The following truncated conjugate-gradient algorithm is particularly appropriate for
solving the trust-region subproblem (3) when the dimension d of the manifold M is very large. Its
original version in Rd was proposed independently by Steihaug [Ste83] and Toint [Toi81] and is
therefore sometimes referred to as the Steihaug-Toint algorithm; see e.g. [CGT00, Algorithm 7.5.1].
The algorithm can be adapted as follows to the trust-region subproblem (3). Note that we use
indices in superscript to denote the evolution of η within the inner iteration, while subscripts are
used in the outer iteration.

Algorithm 2 (truncated CG for the TR subproblem – tCG) Set η0 = 0, r0 = grad f(xk),
δ0 = −r0;
for j = 0, 1, 2, . . . until a stopping criterion is satisfied, perform the iteration:

if gxk
(δj ,Hxk

δj) ≤ 0
Compute τ such that η = ηj + τδj minimizes m(η) in (3)

and satisfies ‖η‖gx = ∆;
return η;

Set αj = gxk
(rj , rj)/gxk

(δj ,Hxk
δj);

Set ηj+1 = ηj + αjδj;
if ‖ηj+1‖gx ≥ ∆

Compute τ ≥ 0 such that η = ηj + τδj satisfies ‖η‖gx = ∆;
return η;

Set rj+1 = rj + αHxk
δj;

Set βj+1 = gxk
(rj+1, rj+1)/gxk

(rj , rj);
Set δj+1 = −rj+1 + βj+1δj;

end (for).

The simplest stopping criterion is to truncate after a fixed number of iteration. In order to
improve the convergence rate, a possibility is to stop as soon as an iteration j is reached for which

‖rj‖ ≤ max(‖r0‖min(‖r0‖θ, κ)). (6)
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4 Convergence analysis

We consider next the global and local convergence properties of the Riemannian trust-region method
(Algorithm 1). Concerning global convergence, we consider Algorithm 1 without any assumption on
the way the trust-region subproblems (3) are solved, except that the approximate solution ηk must
produce a decrease of the model that is at least a fixed fraction of the so-called Cauchy decrease,
and we prove under some additional mild assumptions that the sequences {xk} converge to the set
of stationary points of the cost function. For local convergence, we assume that the trust-region
subproblems are solved using Algorithm 2 with stopping criterion (6) and show that the iterates
converge to nondegenerate stationary points with a rate of convergence at least min{θ, 2}.

In this conference paper, we only give a succinct overview of the results. They are presented in
detail in [ABG04b].

4.1 Global convergence

The global convergence result in Rn, as stated in [NW99, Theorem 4.8] requires that the cost
function f be Lipschitz continuously differentiable. That is to say, for any x, y ∈ Rn,

‖gradf(y)− gradf(x)‖ ≤ β1‖y − x‖. (7)

A key to obtaining a Riemannian counterpart of this global convergence result is to adapt the
notion of Lipschitz continuous differentiability to the Riemannian manifold (M, g). The expression
‖x − y‖ in the right-hand side of (7) naturally becomes the Riemannian distance dist(x, y). For
the left-hand side of (7), observe that the substraction gradf(x) − gradf(y) is not well-defined in
general on a Riemannian manifold since grad f(x) and grad f(y) belong to two different tangent
spaces, namely TxM and TyM . However, if y belongs to a normal neighborhood of x, then there
is a unique geodesic α(t) = Expx(tExp−1

x y) such that α(0) = x and α(1) = y, and we can parallel
transport grad f(y) along α to obtain the vector P 0←1

α grad f(y) in TxM , to yield the following
definition.

Definition 4.1 (Lipschitz continuous differentiability) Assume that (M, g) has an injectivity
radius i(M) > 0. Then a real function f on M is Lipschitz continuous differentiable if it is
differentiable and for all x, y in M such that dist(x, y) < i(M),

‖P 0←1
α grad f(y)− grad f(x)‖ ≤ β1dist(y, x), (8)

where α is the unique geodesic with α(0) = x and α(1) = y.

Note that (8) is symmetric in x and y; indeed, since the paralel transport is an isometry, it follows
that

‖P 0←1
α grad f(y)− gradf(x)‖ = ‖gradf(y)− P 1←0

α gradf(x)‖.
For the purpose of Algorithm 1, which is a descent algorithm, condition (8) need only to be imposed
for all x, y in the level set

{x ∈ M : f(x) ≤ f(x0)}. (9)

Another important assumption in the global convergence result in Rn is that the approximate
solution ηk of the trust-region subproblem (3) produces at least as much decrease in the model
function as a fixed fraction of the Cauchy decrease; see [NW99, Section 4.3]. Since the trust-region
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subproblem (3) is expressed on a Euclidean space, the definition of the Cauchy point is adapted
from Rn without difficulty, and the bound

mk(0)−mk(ηk) ≥ c1‖gradf(xk)‖min
(

∆k,
‖gradf(xk)‖

‖Hk‖
)

, (10)

for some constant c1 > 0, is readily obtained from the Rn case, where ‖Hk‖ := sup{‖Hkξ‖ : ξ ∈
Txk

M, ‖ξ‖ = 1}. Moreover, we allow the approximate solution of (3) to exceed the trust-region
radius by some constant multiple,

‖ηk‖ ≤ γ∆k, for some constant γ ≥ 1. (11)

Finally, we place one additional requirement on the retraction R, that there exists some µ > 0 such
that

‖ξ‖ ≥ µ d(x,Rxξ), ∀x ∈ M, ∀ξ ∈ TxM. (12)

Note that for the exponential retraction discussed in this paper, (12) is satisfied as an equality,
with µ = 1.

With these things in place, we can state and prove the global convergence results. The first
result shows that grad f converges to zero on a subsequence of iterates.

Theorem 4.2 Let {xk} be a sequence of iterates generated by Algorithm 1 with ρ′ ∈ [0, 1
4). Suppose

that f is bounded below on the level set (9) and that there exist constants β > 0 and δ > 0 such
that, for all x ∈ M , all ξ ∈ TxM , ‖ξ‖ = 1, all t < δ, and all k, it holds | d2

dt2
f̂xk

(tξ)| ≤ β and
‖Hk‖ ≤ β. Further suppose that all approximate solutions ηk of (3) satisfy the inequalities (10)
and (11), for some positive constants c1 and γ. We then have

lim inf
k→∞

‖grad f(xk)‖ = 0.

The next result shows that grad f goes to zero on the whole sequence of iterates if some addi-
tional assumptions are satisfied.

Theorem 4.3 Let {xk} be a sequence of iterates generated by Algorithm 1. Suppose that all the
assumptions of Theorem 4.2 are satisfied. Further suppose that ρ′ ∈ (0, 1

4) and that f is Lipschitz
continuously differentiable (Definition 4.1). It then follows that

lim
k→∞

grad f(xk) = 0.

4.2 Local convergence

We first show that the nondegenerate local minima are attractors of Algorithm 1-2 (i.e., Algorithm 1
where the trust-region subproblem (3) is solved with Algorithm 2). The principle of the argument
is closely related to the Capture Theorem, see [Ber95, Theorem 1.2.5].

Theorem 4.4 (convergence to local minima) Consider Algorithm 1-2 with all the assump-
tions of Theorem 4.2. Let v be a nondegenerate local minimum of f . Then there exist δ > 0
such that, for all x0 ∈ Bδ(v) and all ∆0 ∈ (0, ∆̄), the sequence {xk} generated by Algorithm 1-2
converges to v.

Now we study the rate of convergence of the sequences that converge to a nondegenrate local
minimum.
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Theorem 4.5 (rate of convergence) Consider Algorithm 1-2. Suppose that R is a second-order
C2 retraction (Definition 2.1); that f is a C2 cost function on M ; that Hk = Hess f(xk). Let v ∈ M
be a nondegenerate local minimum of f , (i.e., grad f(v) = 0 and Hess f(v) is positive definite).
Further assume that Hess f̂xk

is Lipschitz-continuous at 0x uniformly in x in a neighborhood of v;
that is, there exist β1 > 0, δ1 > 0 and δ2 > 0 such that, for all x ∈ Bδ1(v) and all ξ ∈ Bδ2(0x), it
holds

‖Hess f̂xk
(ξ)−Hess f̂xk

(0x)‖ ≤ β1‖ξ‖. (13)

Then there exists c > 0 such that, for all sequences {xk} generated by Algorithm 1-2 converging to
v, there exists K > 0 such that for all k > K,

dist(xk+1, v) ≤ c (dist(xk, v))min{θ+1,2} (14)

with θ > 0 as in (6).

5 Practical examples

In this section we briefly illustrate how Algorithm 1-2 applies to various practical cases.

5.1 Symmetric eigenvalue decomposition

Let M be the orthogonal group,

M = On = {Q ∈ Rn×n : QT Q = In}.
This manifold is an embedded submanifold of Rn×n. It can be shown that TQOn = {QΩ : Ω =
−ΩT }; see e.g. [HM94]. The canonical Euclidean metric g(A,B) = trace(AT B) on Rn×n induces
on On the metric

gQ(QΩ1, QΩ2) = trace(ΩT
1 Ω2). (15)

We must choose a retraction RQ : TQOn → On satisfying the properties stated in Section 2. The
Riemannian geodesic-based choice is

RQQΩ = ExpQQΩ = Q exp(Q(QT Ω)) = Q exp(Ω)

where exp denotes the matrix exponential. However, the matrix exponential is numerically very
expensive to compute (the computational cost is comparable to solving an n×n eigenvalue problem),
which makes it essential to use computationally cheaper retractions. Given a Lie group G (here
the orthogonal group) and its Lie algebra g (here the set of skew-symmetric matrices), there exists
several ways of approximating exp(Ω), Ω ∈ g, by an R(Ω) such that R(Ω) ∈ G if B ∈ g; these
techniques are well-known in geometric integration (see e.g. [CI01] and references therein) and
can be applied to our case where G is the orthogonal group On. For example, exp(Ω) can be
approximated by a product of plane (or Givens) rotations [GV96] in such a way that R is a second
order approximation of the exponential; see [CI01]. This approach has the advantage of being very
efficient computationally.

For the sake of illustration, consider the cost function

f(Q) = trace(QT AQN)

where A and N are given n × n symmetric matrices. For N = diag(µ1, . . . , µn), µ1 < . . . < µn,
the minimum of f is realized by the orthonormal matrices of eigenvectors of A sorted in increasing
order of corresponding eigenvalue; see e.g. [HM94, Section 2.1].
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Assume that a retraction R is chosen that approximates the exponential at least to order 2.
With the metric g defined as in (15), we obtain

f̂Q(QΩ) := f(RQ(QΩ)) = trace((I + Ω +
1
2
Ω2 + O(Ω3))T QT AQ(I + Ω +

1
2
Ω2 + O(Ω3))N)

= f(Q) + 2trace(ΩT QT AQN) + trace(ΩT QT AQΩN − ΩT ΩQT AQN) + O(Ω3)

from which it follows

Df̂Q(0)[QΩ] = 2trace(QT AQΩN)
1
2
D2f̂Q(0)[QΩ1, QΩ2] = trace(ΩT

1 QT AQΩ2N − 1
2
(ΩT

1 Ω2 + ΩT
2 Ω1)QT AQN)

grad f̂Q(0)= grad f(Q) = Q[QT AQ, N ]

Hess f̂Q(0)[QΩ]= Hess f(Q)[QΩ] =
1
2
Q[[QT AQ,Ω], N ] +

1
2
Q[[N, Ω], QT AQ]

where [A, B] := AB−BA. It is now straightforward to replace these expressions in the general for-
mulation of Algorithm 1-2 and obtain a practical matrix algorithm. Numerical results are presented
in Section 6.

5.2 Singular value decomposition

Let A ∈ Rn×p, n > p. Let

M = On ×Op = {(U, V ) : U ∈ On, V ∈ Op}

endowed with the canonical product metric

g(U,V )((UΩU1, V ΩV 1), (UΩU2, V ΩV 2)) = trace(ΩT
U1ΩU2 + ΩT

V 1ΩV 2).

Consider the cost function
f(U, V ) = trace(UT AV N)

on On×Op, where N = [diag(µ1, . . . , µp)|0p×(n−p)], µ1 < . . . < µp < 0. The minima of f correspond
to ordered left and right singular vectors of A; see [HM94, Section 3.2] for details. Assume that a
retraction R is chosen such that R(U,V )(UΩU , V ΩV ) = (U expΩU , V exp ΩV ) + O((U, V )3). Then
we obtain, using the notation skew(B) = (B −BT )/2, we obtain

grad f̂(U,V )(0, 0)= grad f(U, V ) = (Uskew(UT AV N),−V skew(NUT AV )),

and

Hessf̂(U,V )(0, 0)[(UΩU , V ΩV )]= Hess f(U, V )[(UΩU , V ΩV )]

=
(

U(skew(ΩU skew(UT AV N)) + skew(ΩT
UUT AV N) + skew(UT AV ΩV N)) ,

−V (skew(ΩV skew(NUT AV ) + skew(NΩT
UUT AV ) + skew(NUT AV ΩV ))

)
.
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5.3 Computing the dominant eigenpairs of a symmetric matrix

Let A be a symmetric (not necessarily positive definite) n× n matrix with eigenvalues λ1 ≤ . . . ≤
λp < λp+1 ≤ . . . ≤ λn. Consider the problem of computing the invariant subspace V of A associated
to the p leftmost eigenvalues (in other words, V = span(V ), where AV = V diag(λ1, . . . , λp) and
V T V = I). It is well known that V is the minimizer of the Rayleigh cost function

f(span(Y )) = trace((Y T AY )(Y T Y )−1) (16)

where Y is full-rank n × p. Alternatively, it is possible to compute the dominant eigenspace by
maximizing f (i.e., minimizing −f). Here, the manifold M is the set of p-dimensional subspaces of
Rn, called Grassmann manifold. We refer to [AMS04] for details about the Riemannian structure
of the Grassmann manifold, including formulas for gradients and Hessians. The Riemannian trust-
region approach yields an algorithm that is closely connected to the (inexact) Rayleigh quotient
iteration and to restarted Lanczos methods. Moreover, it follows from the convergence analysis of
the Riemannian trust-region scheme that the method has excellent global and local convergence
properties. Preliminary numerical tests suggest that the trust-region algorithm can match and even
outperform restarted Lanczos. The simpler case where p = 1 is presented in [ABG04a].

5.4 Other examples

The Riemannian trust-region algorithm can be applied in general to minimize smooth functions
on smooth manifolds where a retraction, the gradient and the Hessian have tractable formula-
tions. Other applications include constrained least squares [HM94, Section 1.6], approximation by
lower rank matrices [HM94, Section 5.1], output feedback control [HM94, Section 5.3], sensitiv-
ity optimization [HM94, Chapter 9], and also (see Lippert and Edelman [LE00]) the Procrustes
problem, nearest-Jordan structure, trace minimization with a nonlinear term, simultaneous Schur
decomposition, and simultaneous diagonalization.

6 Numerical Experiments

We performed numerical experiments using a Matlab implementation of the SVD algorithm (Sec-
tion 5.2). The matrix A used was a 100×40 matrix with elements randomly selected from a uniform
distribution. The left and right bases U and V were initialized by generating random matrices of
the proper order (100 × 100 and 40 × 40, respectively) and orthogonalized using the Matlab QR
decomposition. Convergence to a solution was observed on each of the 1000 numerical experiments
conducted.

Figure 1 shows the error in the computed singular values at each iteration of the algorithm
applied to one of the randomly chosen examples. As Algorithm 1 only produces the left and right
singular vectors, the singular values had to be recovered from the matrix A. This was by producing
the matrix Σ̂ = UT AV . The error was measured by computing the Frobenius norm of the difference
between Σ̂ and the diagonal matrix of ordered singular values Σ produced by the Matlab SVD. The
numerical results clearly point to a superlinear rate of convergence.

Similar numerical experiments were performed on the EVD algorithm (Section 5.1) and com-
parable results were obtained.
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Figure 1: Illustration of the convergence for the SVD-RTR experiment. The vertical axis gives the
measure ‖Σ̂− Σ‖F and the horizontal axis indicates the number of iterations of Algorithm 1.

7 Conclusion

We have proposed a trust-region approach for optimizing a smooth function on a Riemannian man-
ifold. The technique relies on retractions that define particular one-to-one correspondences between
the manifold and the tangent space at the current iterate. The Riemannian TR algorithms have,
mutatis mutandis, the same convergence properties as the original algorithms in Rn. Since several
problems of numerical linear algebra can be expressed as an optimization problem on a Riemannian
manifold, it can be anticipated that our general TR algorithm will lead to new computational algo-
rithms and to new convergence results for existing algorithms; applications to full eigenvalue and
singular value decomposition have been briefly presented, and an application to the computation
of a few dominant or minor eigenvectors has been presented in detail in [ABG04a].
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