
Parallel MATLAB at FSU:
Single Program Multiple Data

John Burkardt
Virginia Tech

..........
https://people.sc.fsu.edu/∼jburkardt/presentations/...

matlab spmd 2010 fsu.pdf

13 April 2010

1 / 1

MATLAB Parallel Computing

SPMD: Single Program, Multiple Data

QUAD Example

Distributed Arrays

IMAGE Example

CONTRAST Example

CONTRAST2: Messages

Batch Computing

Conclusion

2 / 1

SPMD: is not PARFOR

The parfor command (Monday’s lecture) is easy to use, but it only lets
us do parallelism in terms of loops. The only choice we make is whether
a loop is to run in parallel.

We can’t determine how the loop iterations are divided up;

we can’t be sure which worker runs which iteration;

we can’t examine the work of any individual worker.

Using parfor, the individual workers are anonymous, and all the memory
is shared (or copied and returned).

3 / 1

SPMD: is not TASK PROGRAMMING

Task computing (Friday’s lecture) allows us to run many copies of one
program, each time with a different set of input, each copy on one
processor.

the program copies don’t necessarily run at the same time;

no task can communicate with any other task;

no task can provide results to another task;

Using task computing, your job is broken up into many “atomic” tasks.
Only when all tasks are completed can the results be combined.

4 / 1

SPMD: is Single Program, Multiple Data

The SPMD command (today’s lecture) is like working with a very
simplified version of MPI. There is one client process, supervising
workers who cooperate on a single program. Each worker has an
identifier, knows how many workers there are total, and can determine its
behavior based on that ID.

each worker runs on a separate processor;

each worker uses separate memory;

a common program is used;

workers meet at synchronization points;

the client program can examine or modify data on any worker;

any two workers can communicate directly via messages.

5 / 1

SPMD: Getting Workers

The spmd program needs MATLAB to gather workers to cooperate on
the program.

So on a desktop, we issue an interactive matlabpool request:

matlabpool open local 4

results = myfunc (args);

or use the batch command with a matlabpool argument:

batch (’myscript’, ’matlabpool’, 4)

On the FSU HPC cluster, we say:

results = fsuClusterMatlab([],[],’m’,’w’,4, ...

@myfunc, { args })

(The ’m’ indicates that this is an “mpi-like” job.)

6 / 1

SPMD: The SPMD Environment

MATLAB sets up one processor which “knows” it’s the client.

MATLAB sets up the requested number of workers, each with a copy of
the program. Each worker “knows” it’s a worker, and has access to two
special variables:

numlabs, the number of workers;

labindex, a unique worker identifier between 1 and numlabs.

Oddly enough, the client does not know the value of numlabs. It could
determine this by the command

n = matlabpool (’size’)

7 / 1

SPMD: The SPMD Command

The client and the workers share a single program in which some
commands are delimited within blocks opening with spmd and closing
with end.

The client executes commands up to the first spmd block, when it
pauses. The workers execute the code in the block. Once they finish, the
client resumes execution.

Each worker has its own memory space, in which it stores the data it is
working on. When an spmd block is completed, the worker pauses, but
the data is not lost. The names and their related values can all be
accessed as soon as another spmd block is encountered.

8 / 1

MATLAB Parallel Computing

SPMD: Single Program, Multiple Data

QUAD Example

Distributed Arrays

IMAGE Example

CONTRAST Example

CONTRAST2: Messages

Batch Computing

Conclusion

9 / 1

QUAD: Setting Up Integration Limits

Here is the start of a program to estimate an integral on [0,1].

Notice that the variables a and b will have different values on each
worker...and no value on the client!

fprintf (1, ’ Set up the integration limits:\n’);

spmd

a = (labindex - 1) / numlabs;

b = labindex / numlabs;

end

10 / 1

QUAD: Each worker has an ID

The spmd delimiter marks a section of code which is to be carried out by
each lab or worker, and not by the client.

The fact that the MATLAB program can be marked up into instructions
for the client and instructions for the workers explains the single
program part of SPMD.

But how do multiple workers do different things if they see the same
instructions? Luckily, each worker is assigned a unique identifier, the
value of the variable labindex.

The worker also gets the value of numlabs, the total number of workers.
This information is enough to ensure that each worker can be assigned
different tasks. This explains the multiple data part of SPMD!

11 / 1

QUAD: Use the ID to assign work

Now let’s go back to our program fragment. But first we must explain
that we are trying to approximate an integral over the interval [0,1].
Using SPMD, we are going to have each worker pick a portion of that
interval to work on, and we’ll sum the result at the end. Now let’s look
more closely at the statements:

fprintf (1, ’ Set up the integration limits:\n’);

spmd

a = (labindex - 1) / numlabs;

b = labindex / numlabs;

end

12 / 1

QUAD: One Name Must Reference Several Values

Each worker runs on a separate processor with its own memory. It can
“see” the variables on the client, but it doesn’t know or care what is
going on on the other workers.

Each worker defines a and b but stores different values there.

The client can “see” the memory of all the workers. Since there are
multiple values using the same name, the client can refer to them by
index: thus a{1} is how the client refers to the variable a on worker 1.
The client can read or write this value.

For the client, these worker variables are composite variables. Their
indexing is similar to cell arrays.

The workers can “see” variables in the client’s memory. They can read
those values, but are not allowed to change them.

13 / 1

QUAD: How Names and Values are Shared (or not)

a = 1;

b = 2;

spmd

a = b + 1; <-- Illegal to write client variables.

c = a + b; <-- OK to "read" client’s variables.

d = labindex;

e = numlabs;

end

c = 1; <-- Illegal to use same name as worker variable.

c{2} = 1; <-- OK to "write" worker variables!

f = d{3}; <-- OK to "read" worker variables.

c_sum = c{1} + c{2} + c{3} + c{4};

h = (b - a) / numlabs;

h = (b - a) / numlabs{4};

numlabs = matlabpool (’size’);

n = matlabpool (’size’);

14 / 1

QUAD: Dealing with Composite Variables

So in QUAD, each worker could print a and b:

spmd

a = (labindex - 1) / numlabs;

b = labindex / numlabs;

fprintf (1, ’ A = %f, B = %f\n’, a, b);

end

———— or the client could print them all ————

spmd

a = (labindex - 1) / numlabs;

b = labindex / numlabs;

end

for i = 1 : 4 <-- "numlabs" wouldn’t work here!

fprintf (1, ’ A = %f, B = %f\n’, a{i}, b{i});

end

15 / 1

QUAD: The Solution in 4 Parts

Assuming we’ve defined our limits of integration, we now want to carry
out the trapezoid rule for integration:

spmd

x = linspace (a, b, n);

fx = f (x);

quad_part = (fx(1) + 2 * sum(fx(2:n-1)) + fx(n))

/2 /(n-1);

fprintf (1, ’ Partial approx %f\n’, quad_part);

end

with result:

2 Partial approx 0.874676

4 Partial approx 0.567588

1 Partial approx 0.979915

3 Partial approx 0.719414

16 / 1

QUAD: Combining Partial Results

We really want one answer, the sum of all these approximations.

One way to do this is to gather the answers back on the client, and sum
them:

quad = sum (quad_part{1:4});

fprintf (1, ’ Approximation %f\n’, quad);

with result:

Approximation 3.14159265

17 / 1

QUAD: Source Code for QUAD SPMD

f u n c t i o n v a l u e = quad spmd (n)

f p r i n t f (1 , ’ Compute l i m i t s\n ’) ;
spmd

a = (l a b i n d e x − 1) / numlabs ;
b = l a b i n d e x / numlabs ;
f p r i n t f (1 , ’ Lab %d works on [%f ,% f] .\ n ’ , l a b i nd e x , a , b) ;

end

f p r i n t f (1 , ’ Each l a b e s t ima t e s pa r t o f the i n t e g r a l .\n ’) ;

spmd
x = l i n s p a c e (a , b , n) ;
f x = f (x) ;
quad pa r t = (b − a) * (f x (1) + 2 * sum (f x (2 : n−1)) + f x (n)) . . .

/ 2 . 0 / (n − 1) ;
f p r i n t f (1 , ’ Approx %f\n ’ , quad pa r t) ;

end

quad = sum (quad pa r t{:}) ;
f p r i n t f (1 , ’ Approx imat ion = %f\n ’ , quad)

r e t u r n
end

18 / 1

MATLAB Parallel Computing

SPMD: Single Program, Multiple Data

QUAD Example

Distributed Arrays

IMAGE Example

CONTRAST Example

CONTRAST2: Messages

Batch Computing

Conclusion

19 / 1

DISTRIBUTED: Conjugate Gradient Setup

It is possible to use what amounts to SPMD programming without
explicitly using the spmd statement. That’s because many MATLAB
functions and operators are capable of carrying out algorithms that
involve the cooperation of multiple workers with separate memory spaces.

The user might only see the “client” copy of MATLAB; special
commands or options distribute the data to the available workers, who
then cooperate to carry out the computation.

Again, this is “really” SPMD programming, except that the MathWorks
staff had to write the spmd blocks, hidden inside MATLAB’s functions.

20 / 1

DISTRIBUTED: The Client Can Distribute

Where does distributed data come from? MATLAB provides several
ways to get started. If the client process has a 300x400 array called A,
and there are 4 SPMD workers, then the simple command

ad = distributed (a);

distributes the elements of A by columns:

Worker 1 Worker 2 Worker 3 Worker 4

Col: 1:100 | 101:200 | 201:300 | 301:400]

Row

1 [a b c d | e f g h | i j k l | m n o p]

2 [A B C D | E F G H | I J K L | M N O P]

... [* * * * | * * * * | * * * * | * * * *]

300 [1 2 3 4 | 5 6 7 8 | 9 0 1 2 | 3 4 5 6]

By default, the last dimension is the one used for distribution.

21 / 1

DISTRIBUTED: Workers Can Get Their Part

If the client has distributed the matrix by the command

ad = distributed (a);

then each worker can make a local variable containing its part:

spmd

al = getLocalPart (ad);

[ml, nl] = size (al);

end

On worker 3, [ml, nl] = (300, 100), and al is

[i j k l]

[I J K L]

[* * * *]

[9 0 1 2]

Notice that local and global column indices will differ!

22 / 1

DISTRIBUTED: The Client Can Collect Results

The client can access any worker’s local part by using curly brackets.
Thus it could copy what’s on worker 3 by

worker3_array = al{3};

However, it’s likely that the client simply wants to collect all the parts
and put them back into one normal MATLAB array. If the local arrays
are simply column-sections of a 2D array:

a2 = [al{:}]

Suppose we had a 3D array whose third dimension was 3, and we had
distributed it as 3 2D arrays. To collect it back:

a2 = al{1};

a2(:,:,2) = al{2};

a2(:,:,3) = al{3};

23 / 1

DISTRIBUTED: Methods to Gather Data

Instead of having an array created on the client and distributed to the
workers, it is possible to have a distributed array constructed by having
each worker build its piece. The result is still a distributed array, but
when building it, we say we are building a codistributed array.

If you have a choice, building a distributed array in the codistributed way
has several advantages over building it on the client and then distributing
it:

1 The array might be too large to build entirely on one processor;

2 The array can be build much faster if each processor can set up its
part;

3 Once the array is built, you skip the communication cost of
distributing it.

24 / 1

DISTRIBUTED: Methods to Gather Data

When the getLocalPart command is used, a local copy is made of
that part of the distributed array. This is a separate object from the
distributed array!

Changes to the local part don’t immediately affect the distributed array.
To overwrite the distributed array with the (modified) local parts, the
workers can issue the command:

ad = gather (al)

The client can copy a distributed array into a ”normal” array stored
entirely in its memory space by the command

a = gather (ad);

or the client can access and concatenate the local parts.

25 / 1

DISTRIBUTED: Conjugate Gradient Setup

Because many MATLAB operators and functions can automatically
detect and deal with distributed data, it is possible to write programs
that carry out sophisticated algorithms in which the computation never
explicitly worries about where the data is!

The only tricky part is distributing the data initially, or gathering the
results at the end.

Let us look at a conjugate gradient code which has been modified to deal
with distributed data.

26 / 1

DISTRIBUTED: Conjugate Gradient Setup

n = 1400 ;
nonze r = 7 ;
lambda = 20 ;
n i t e r = 15 ;
nz = n * (nonze r + 1) * (nonze r + 1) + n * (nonze r + 2) ;

A = sprand (n , n , 0 . 5 * nz / nˆ2 , c o d i s t r i b u t o r ()) ;
A = 0 .5 * (A + A’) ;

I = speye (n , c o d i s t r i b u t o r ()) ;
A = A− lambda * I ;

x = ones (n , 1) ;

f o r i t e r = 1 : n i t e r
[z , rnorm] = c g i t (A, x) ;
z e t a = lambda + 1 / (x ’ * z)
x = z / norm (z) ;

end

sprand sets up a sparse random array A.
speye sets up a sparse identity matrix I.
The codistributor() qualifier means A and I are distributed across the
workers, and built in a codistributed way.

27 / 1

DISTRIBUTED: Conjugate Gradient Iteration

f u n c t i o n [z , rnorm] = c g i t (A, x)

z = ze ro s (s i z e (x)) ;
r = x ;
rho = r ’ * r ;
p = r ;

f o r i = 1 : 15
q = A * p ;
a lpha = rho / (p ’ * q) ;
z = z + a lpha * p ;
rho0 = rho ;
r = r − a lpha * q ;
rho = r ’ * r ;
beta = rho / rho0 ;
p = r + beta * p ;

end

rnorm = norm (x − A * z) ;

r e t u r n
end

The conjugate gradient iteration code is identical to code that would be
used if A was an ordinary MATLAB array.

28 / 1

DISTRIBUTED: Comment

In this example, we have emphasized how trivial it is to extend a
MATLAB algorithm to a distributed memory problem. Essentially, all you
have to do is figure out what that codistributor() call is doing; the
operational commands don’t change.

There are two comments worth making, in the interest of honesty:

Not all MATLAB operators have been extended to work with
distributed memory. In particular, (the last time we asked), the
backslash or “linear solve” operator x=A\b can’t be used yet for
sparse distributed matrices.

Getting “real” data (as opposed to matrices full of random numbers)
properly distributed across multiple processors involves more choices
and more thought than is suggested by the example we have shown!

29 / 1

DISTRIBUTED: a Finite Element Heat Code

Professor Gene Cliff at Virginia Tech has prepared a program that
combines SPMD and distributed data to solve the steady state heat
equations in 2D, using the finite element method.

He assigns a subset of the finite element nodes to each worker. That
worker is then responsible for constructing the columns of the (sparse)
finite element matrix associated with those nodes.

Although the matrix is assembled in a distributed fashion, it has to be
gathered back into a standard array before the linear system can be
solved, because sparse linear systems can’t be solved as a distributed
array (yet).

This example is available as fem2d steady heat spmd.

30 / 1

DISTRIBUTED: The Grid

31 / 1

DISTRIBUTED: Finite Element System matrix

The discretized heat equation results in a linear system of the form

M z = F + b

where M is the stiffness matrix, z is the unknown finite element
coefficients, F contains source terms and b accounts for boundary
conditions.

In the parallel implementation, the system matrix M and the vectors F
and b are distributed arrays. The default distribution of M by columns
essentially associates each SPMD worker with a group of finite element
nodes.

32 / 1

DISTRIBUTED: Finite Element System Matrix

To assemble the matrix, each worker loops over all elements. If element
E contains any node associated with the worker, the worker computes
the entire local stiffness matrix Ki,j . Columns of K associated with
worker nodes are added to the local part of Mi,j . The rest are discarded
(which is OK, because they will also be computed and saved by the
worker responsible for those nodes).

When element 5 is handled, the “blue”, “red” and “black” processors
each compute K . But blue only updates column 11 of M, red columns
16 and 17, and black columns 21, 22, and 23.

At the cost of some redundant computation, we avoid a lot of
communication.

33 / 1

DISTRIBUTED: The Results

34 / 1

MATLAB Parallel Computing

SPMD: Single Program, Multiple Data

QUAD Example

Distributed Arrays

IMAGE Example

CONTRAST Example

CONTRAST2: Messages

Batch Computing

Conclusion

35 / 1

IMAGE: Image Processing in Parallel

x = imread (’ b a l l o o n s . t i f ’) ;

y = imno i s e (x , ’ s a l t & pepper ’ , 0 .30) ;

yd = d i s t r i b u t e d (y) ;

spmd
y l = ge tLo c a lPa r t (yd) ;
y l = med f i l t 2 (y l , [3 , 3]) ;

end

z (1 : 4 80 , 1 : 6 4 0 , 1) = y l {1};
z (1 : 4 8 0 , 1 : 6 4 0 , 2) = y l {2};
z (1 : 4 8 0 , 1 : 6 4 0 , 3) = y l {3};

f i g u r e ;
subp l o t (1 , 3 , 1) ; imshow (x) ; t i t l e (’X ’) ;
subp l o t (1 , 3 , 2) ; imshow (y) ; t i t l e (’Y ’) ;
subp l o t (1 , 3 , 3) ; imshow (z) ; t i t l e (’Z ’) ;

36 / 1

IMAGE: Image → Noisy Image → Filtered Image

This filtering operation uses a 3x3 pixel neighborhood.
We could blend all the noise away with a larger neighborhood.

37 / 1

IMAGE: Image → Noisy Image → Filtered Image

% Read a c o l o r image , s t o r e d as 480 x640x3 a r r a y .
%

x = imread (’ b a l l o o n s . t i f ’) ;
%
% Create an image Y by add ing ” s a l t and pepper ” n o i s e to X .
%

y = imno i s e (x , ’ s a l t & pepper ’ , 0 .30) ;
%
% Make YD, a d i s t r i b u t e d v e r s i o n o f Y .
%

yd = d i s t r i b u t e d (y) ;
%
% Each worker works on i t s ” l o c a l p a r t ” , YL .
%

spmd
y l = ge tLo c a lPa r t (yd) ;
y l = med f i l t 2 (y l , [3 , 3]) ;

end
%
% The c l i e n t r e t r i e v e s the data from each worker .
%

z (1 : 4 80 , 1 : 6 4 0 , 1) = y l {1};
z (1 : 4 8 0 , 1 : 6 4 0 , 2) = y l {2};
z (1 : 4 8 0 , 1 : 6 4 0 , 3) = y l {3};

%
% Di s p l a y the o r i g i n a l , no i s y , and f i l t e r e d v e r s i o n s .
%

f i g u r e ;
subp l o t (1 , 3 , 1) ; imshow (x) ; t i t l e (’ O r i g i n a l image ’) ;
subp l o t (1 , 3 , 2) ; imshow (y) ; t i t l e (’ No i sy Image ’) ;
subp l o t (1 , 3 , 3) ; imshow (z) ; t i t l e (’ Median F i l t e r e d Image ’) ;

38 / 1

MATLAB Parallel Computing

SPMD: Single Program, Multiple Data

QUAD Example

Distributed Arrays

IMAGE Example

CONTRAST Example

CONTRAST2: Messages

Batch Computing

Conclusion

39 / 1

CONTRAST: Image → Contrast Enhancement → Image2

%
% Get 4 SPMD worke r s .
%

mat labpoo l open l o c a l 4
%
% Read an image .
%

x = imread (’ s u r f s u p . t i f ’) ;
%
% Since the image i s b l a c k and white , i t w i l l be d i s t r i b u t e d by columns .
%

xd = d i s t r i b u t e d (x) ;
%
% Have each worker enhance the c o n t r a s t i n i t s p o r t i o n o f the p i c t u r e .
%

spmd
x l = ge tLo c a lPa r t (xd) ;
x l = n l f i l t e r (x l , [3 , 3] , @ad j u s tCon t r a s t) ;
x l = u i n t 8 (x l) ;

end
%
% We are work ing wi th a b l a c k and wh i t e image , so we can s imp l y
% conca t ena t e the s ubma t r i c e s to ge t the whole o b j e c t .
%

xf spmd = [x l{:}] ;

mat l abpoo l c l o s e

40 / 1

CONTRAST: Image → Contrast Enhancement → Image2

When a filtering operation is done on the client, we get picture 2. The
same operation, divided among 4 workers, gives us picture 3. What went
wrong?

41 / 1

CONTRAST: Image → Contrast Enhancement → Image2

Each pixel has had its contrast enhanced. That is, we compute the
average over a 3x3 neighborhood, and then increase the difference
between the center pixel and this average. Doing this for each pixel
sharpens the contrast.

+-----+-----+-----+

| P11 | P12 | P13 |

+-----+-----+-----+

| P21 | P22 | P23 |

+-----+-----+-----+

| P31 | P32 | P33 |

+-----+-----+-----+

P22 <- C * P22 + (1 - C) * Average

42 / 1

CONTRAST: Image → Contrast Enhancement → Image2

When the image is divided by columns among the workers, artificial
internal boundaries are created. The algorithm turns any pixel lying along
the boundary to white. (The same thing happened on the client, but we
didn’t notice!)

Worker 1 Worker 2

+-----+-----+-----+ +-----+-----+-----+ +----

| P11 | P12 | P13 | | P14 | P15 | P16 | | P17

+-----+-----+-----+ +-----+-----+-----+ +----

| P21 | P22 | P23 | | P24 | P25 | P26 | | P27

+-----+-----+-----+ +-----+-----+-----+ +----

| P31 | P32 | P33 | | P34 | P35 | P36 | | P37

+-----+-----+-----+ +-----+-----+-----+ +----

| P41 | P42 | P43 | | P44 | P45 | P46 | | P47

+-----+-----+-----+ +-----+-----+-----+ +----

Dividing up the data has created undesirable artifacts!

43 / 1

CONTRAST: Image → Contrast Enhancement → Image2

The result is the spurious lines on the processed image.

44 / 1

MATLAB Parallel Computing

SPMD: Single Program, Multiple Data

QUAD Example

Distributed Arrays

IMAGE Example

CONTRAST Example

CONTRAST2: Messages

Batch Computing

Conclusion

45 / 1

CONTRAST2: Workers Need to Communicate

The spurious lines would disappear if each worker could just be allowed
to peek at the last column of data from the previous worker, and the first
column of data from the next worker.

Just as in MPI, MATLAB includes commands that allow workers to
exchange data.

The command we would like to use is labSendReceive() which controls
the simultaneous transmission of data from all the workers.

data received = labSendReceive (to, from, data sent);

46 / 1

CONTRAST2: Who Do I Want to Communicate With?

spmd

xl = getLocalPart (xd);

if (labindex ~= 1)

previous = labindex - 1;

else

previous = numlabs;

end

if (labindex ~= numlabs)

next = labindex + 1;

else

next = 1;

end

47 / 1

CONTRAST2: First Column Left, Last Column Right

column = labSendReceive (previous, next, xl(:,1));

if (labindex < numlabs)

xl = [xl, column];

end

column = labSendReceive (next, previous, xl(:,end));

if (1 < labindex)

xl = [column, xl];

end

48 / 1

CONTRAST2: Filter, then Discard Extra Columns

xl = nlfilter (xl, [3,3], @enhance_contrast);

if (labindex < numlabs)

xl = xl(:,1:end-1);

end

if (1 < labindex)

xl = xl(:,2:end);

end

xl = uint8 (xl);

end

49 / 1

CONTRAST2: Image → Enhancement → Image2

Four SPMD workers operated on columns of this image.
Communication was allowed using labSendReceive.

50 / 1

CONTRAST2: The Heat Equation

I have used image processing to illustrate this example, but consider the
fact that the contrast enhancement operation updates values by
comparing them to their neighbors.

The very same kind of operation applies in the heat equation, except, of
course that there, heat differences tend to average out!

In a simple explicit method for a time dependent 2D heat equation, we
repeatedly update each value by combining it with its north, south, east
and west neighbors.

That means we could do the same kind of parallel computation, dividing
the geometry into strip, and avoiding artificial boundary effects by having
neighboring SPMD workers exchange “boundary” data.

51 / 1

CONTRAST2: The Heat Equation

The ”east” neighbor lies in the neighboring processor, so its value must
be sent by message in order for the computation to proceed.

52 / 1

CONTRAST2: The Heat Equation

So now it’s time to modify the image processing code to solve the heat
equation.

But just for fun, let’s use our black and white image as the initial
condition! Black is cold, white is hot.

In contrast to the contrast example, the heat equation tends to smooth
out differences. So let’s watch our happy beach memories fade away ...
in parallel ... and with no artificial boundary seams.

53 / 1

CONTRAST2: The Heat Equation, Step 0

54 / 1

CONTRAST2: The Heat Equation, Step 10

55 / 1

CONTRAST2: The Heat Equation, Step 20

56 / 1

CONTRAST2: The Heat Equation, Step 40

57 / 1

CONTRAST2: The Heat Equation, Step 80

58 / 1

MATLAB Parallel Computing

SPMD: Single Program, Multiple Data

QUAD Example

Distributed Arrays

IMAGE Example

CONTRAST Example

CONTRAST2: Messages

Batch Computing

Conclusion

59 / 1

BATCH: Indirect Execution

In the previous lecture, we looked at interactive execution with the
matlabpool command. The batch command is an alternative approach
which allows you to execute a MATLAB script in the background on your
own machine.

The script can use parfor or spmd statements. The batch command
includes a matlabpool argument that allows you to request a given
number of workers.

Since the batch job will not use your current MATLAB session, your
matlabpool request must ask for one more worker than normal, to play
the role of the client!

60 / 1

BATCH: PRIME FUN is the function

f u n c t i o n t o t a l = p r ime fun (n)

spmd

n l o = (n * (l a b i n d e x − 1)) / numlabs + 1 ;
nh i = (n * l a b i n d e x) / numlabs ;
i f (n l o == 1)

n l o = 2 ;
end

t o t a l p a r t = 0 ;

f o r i = n l o : nh i

pr ime = 1 ;
f o r j = 2 : i − 1

i f (mod (i , j) == 0)
pr ime = 0 ;
break

end
end

t o t a l p a r t = t o t a l p a r t + pr ime ;
end

t o t a l s pmd = gp l u s (t o t a l p a r t) ;
end

t o t a l = to t a l s pmd{1};
r e t u r n

end

61 / 1

BATCH: PRIME SCRIPT runs the function

%% PRIME SCRIPT i s a s c r i p t to c a l l PRIME FUN .
%
% D i s c u s s i o n :
%
% The BATCH command runs s c r i p t s , not f u n c t i o n s . So we have to w r i t e
% t h i s s h o r t s c r i p t i f we want to work wi th BATCH!
%

n = 10000;

f p r i n t f (1 , ’\n ’) ;
f p r i n t f (1 , ’PRIME SCRIPT\n ’) ;
f p r i n t f (1 , ’ Count pr ime numbers from 1 to %d\n ’ , n) ;

t o t a l = p r ime fun (n) ;

62 / 1

BATCH: Using the BATCH Command

job = batch (’prime_script’, ...

’configuration’, ’local’, ... <-- Run it locally.

’matlabpool’, 5) <-- 4 workers, 1 client.

wait (job); <-- One way to find out when job is done.

load (job); <-- Load the output variables from

the job into the MATLAB workspace.

total <-- We can examine the value of TOTAL.

destroy (job); <-- Clean up

63 / 1

BATCH: Using the BATCH Command

The wait command pauses your MATLAB session.

Using batch, you can submit multiple jobs:

job1 = batch (...)

job2 = batch (...)

Using get, you can check on any job’s status:

get (job1, ’state’)

Using load, you can get the whole workspace, or you can examine just a
single output variable if you specify the variable name:

total = load (job2, ’total’)

64 / 1

BATCH: The BATCH Command

job_id = batch (

’script_to_run’, ...

’configuration’, ’local’ or perhaps remote, ...

’FileDependencies’, ’file’ or {’file1’,’file2’}, ...

’CaptureDiary’, ’true’, ...

’CurrentDirectory’, ’/home/burkardt/matlab’, ...

’PathDependencies’, ’path’ or {’path1’,’path2’}, ...

’matlabpool’, number of workers (can be zero!))

Note that you do not include the file extension when naming the script to
run, or the files in the FileDependencies.

65 / 1

MATLAB Parallel Computing

SPMD: Single Program, Multiple Data

QUAD Example

Distributed Arrays

IMAGE Example

CONTRAST Example

CONTRAST2: Messages

Batch Computing

Conclusion

66 / 1

CONCLUSION: Summary of Examples

The QUAD example showed a simple problem that could be done as
easily with SPMD as with PARFOR. We just needed to learn about
composite variables!

The CG example showed that many MATLAB operations work for
distributed arrays, a kind of array storage scheme associated with SPMD.
It takes some effort to understand and use distributed arrays, but this is a
key idea for sophisticated SPMD programming.

The IMAGE examples showed us interesting cases in which a problem can
be broken up into subproblems to be dealt with by SPMD workers. We
also saw that sometimes it is necessary for these workers to
communicate, using a simple kind of MPI message system.

67 / 1

CONCLUSION: Where is it?

The Parallel Computing Toolbox is installed on the HPC login nodes (2
licenses each) and there are 16 DCE licenses on the HPC compute nodes.

FSU’s Department of Scientific Computing has received 20 extra,
temporary licenses for the Parallel Computing Toolbox.

It’s available on classroom machines class01 through class10 and the
public machines hallway-b through hallway-f, and valid through April 21.

Run it by typing /scratch/R2010aTrial/bin/matlab

68 / 1

CONCLUSION: Where is it?

The temporary license includes lots of extras!:

Curve Fitting Toolbox

Image Processing Toolbox

Optimization Toolbox

Parallel Computing Toolbox

Signal Processing Blockset

Signal Processing Toolbox

Statistics Toolbox

Symbolic Math Toolbox

69 / 1

CONCLUSION: Where is it?

MATLAB Parallel Computing Toolbox User’s Guide 4.3
www.mathworks.com/access/helpdesk/help/pdf doc/distcomp/...
distcomp.pdf

Gaurav Sharma, Jos Martin,
MATLAB: A Language for Parallel Computing,
International Journal of Parallel Programming,
Volume 37, Number 1, pages 3-36, February 2009.

FSU HPC web site: www.hpc.fsu.edu/

http://people.sc.fsu.edu/∼burkardt/m src/m src.html

quad spmd
cg distributed
fd2d heat explicit spmd
fem2d heat steady spmd
image spmd
contrast spmd and contrast2 spmd

70 / 1

