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A Little History on Monte Carlo Methods for PDEs

Early History of MCMs for PDEs

1. Courant, Friedrichs, and Lewy: Their pivotal 1928 paper has
probabilistic interpretations and MC algorithms for linear elliptic
and parabolic problems

2. Fermi/Ulam/von Neumann: Atomic bomb calculations were done
using Monte Carlo methods for neutron transport, their success
inspired much post-War work especially in nuclear reactor design

3. Kac and Donsker: Used large deviation calculations to estimate
eigenvalues of a linear Schrödinger equation

4. Forsythe and Leibler: Derived a MCM for solving special linear
systems related to discrete elliptic PDE problems
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Some Examples Using This for Computing Elliptic Problems

The Walk on Spheres Method

The First Passage (FP) Probability is the Green’s
Function

Back to our canonical elliptic boundary value problem:

1
2

∆u(x) = 0, x ∈ Ω

u(x) = f (x), x ∈ ∂Ω

I Distribution of z is uniform on the sphere
I Mean of the values of u(z) over the sphere is u(x)

I u(x) has mean-value property and harmonic
I Also, u(x) satisfies the boundary condition

u(x) = Ex [f (X x(t∂Ω))] (1)
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Some Examples Using This for Computing Elliptic Problems

The Walk on Spheres Method

The First Passage (FP) Probability is the Green’s
Function

Reinterpreting as an average of the boundary values

u(x) =

∫
∂Ω

p(x , y) f (y) dy (2)

Another representation in terms of an integral over the boundary

u(x) =

∫
∂Ω

∂g(x , y)

∂n
f (y) dy (3)

g(x , y) – Green’s function of the Dirichlet problem in Ω

=⇒ p(x , y) =
∂g(x , y)

∂n
(4)
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Some Examples Using This for Computing Elliptic Problems

The Walk on Spheres Method

‘Walk on Spheres’ (WOS) and ‘Green’s Function First
Passage’ (GFFP) Algorithms

I Green’s function is known
=⇒ direct simulation of exit points and computation of the
solution through averaging boundary values

I Green’s function is unknown
=⇒ simulation of exit points from standard subdomains of Ω,
e.g. spheres
=⇒ Markov chain of ‘Walk on Spheres’ (or GFFP algorithm)
x0 = x , x1, . . . , xN
xi → ∂Ω and hits ε-shell is N = O(| ln(ε)|) steps
xN simulates exit point from Ω with O(ε) accuracy
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Some Examples Using This for Computing Elliptic Problems

The Walk on Spheres Method

‘Walk on Spheres’ (WOS) and ‘Green’s Function First
Passage’ (GFFP) Algorithms

WOS:
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Some Examples Using This for Computing Elliptic Problems

The Walk on Spheres Method

Timing with WOS
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Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

Solc-Stockmayer Model without Potential
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Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

The Simulation-Tabulation (S-T) Method for
Generalization

I Green’s function for the non-intersected surface of a sphere
located on the surface of a reflecting sphere
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Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

Porous Media: Complicated Interfaces
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Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

Computing Capacitance Probabilistically

I Hubbard-Douglas: can compute permeability of nonskew object
via capacitance

I Recall that C = Q
u , if we hold conductor (Ω)at unit potential

u = 1, then C = total charge on conductor (surface)
I The PDE system for the potential is

∆u = 0, x /∈ Ω; u = 1, x ∈ ∂Ω; u → 0 as x →∞ (5)

I Recall u(x) = Ex [f (X x(t∂Ω))] = probability of walker starting at x
hitting Ω before escaping to infinity

I Charge density is first passage probability
I Capacitance (relative to a sphere) is probability of walker starting

at x (random chosen on sphere) hitting Ω before escaping to
infinity
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Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

Various Laplacian Green’s Functions for Green’s
Function First Passage (GFFP)

O
O

O

Putting back (a) Void space(b) Intersecting(c)
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Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

Escape to∞ in A Single Step

I Probability that a diffusing particle at r0 > b will escape to infinity

Pesc = 1− b
r0

= 1− α (6)

I Putting-back distribution density function

ω(θ, φ) =
1− α2

4π[1− 2α cos θ + α2]3/2 (7)

I (b, θ, φ) ; spherical coordinates of the new position when the old
position is put on the polar axis
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Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

Charge Density on a Circular Disk via Last-Passage



Monte Carlo Methods for Partial Differential Equations: A Personal Journey

Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

Time Reversal Brownian Motion: Approach from the
Outside
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Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

Approach from the Outside

I P(x): prob. of diffusing from ε above lower FP surface to∞

P(x) =

∫
∂Ωy

g(x , y , ε)p(y ,∞)dS (8)

σ(x) = − 1
4π

d
dε

∣∣∣∣∣
ε=0

φ(x) =
1

4π
d
dε

∣∣∣∣∣
ε=0

P(x) (9)

σ(x) =
1

4π

∫
∂Ωy

G(x , y)p(y ,∞)dS (10)

where

G(x , y) =
d
dε

∣∣∣∣∣
ε=0

g(x , y , ε) (11)

I G(x , y) satisfies a point dipole problem
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Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

Charge Density on the Circular Disk

G =
3
4

cos θ
a3 (12)

σ(x) =
3

16π

∫
∂Ωr

cos θ
a3 p(r,∞)dS (13)

where
p(r,∞) = 1− 2

π
arctan

 √
2b√

r2 − b2 +
√

(r2 − b2)2 + 4b2x2

 (14)
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Problems in Electrostatics/Materials

Charge Density on the Circular Disk
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Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

Edge Distribution on the Circular Disk

σ(r) =
1

4π
1√

1− r2
(15)

Let r = 1− x :
σ(x) =

1
4π

1√
2x

(1− x/2)−1/2 (16)

when x is small enough,
σ(x) ' 1

4
√

2π
1√
x

(17)

σ(x) ' σe
1√
x

(18)
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Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

Unit Cube Edge Distribution
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Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

Unit Cube Edge Distribution

σ(x , δe) = δ
π/α−1
e σe(x) (19)

I σ(x , δe): charge on a curve parallel to the edge separated by δe

I σe(x): edge distribution
I α: angle between the two intersecting surfaces, here α = 3π/2

σe(x) =
1

4π
lim
δe→0

δ
1−π/α
e

∫
∂Ωe

G(x , y)p(y ,∞)dS (20)

I ∂Ωe: cylindrical surface that intersects the pair of absorbing
surfaces meeting at angle α
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Some Examples Using This for Computing Elliptic Problems

Problems in Electrostatics/Materials

Unit Cube Edge Distribution

I G(x , y):

G(x , y) =
d

dδε

∣∣∣∣∣
δε=0

g(x , y , δε) (21)

I g(x , y , δε): Laplace Green’s function on the surface, ∂Ωe, with
source point x at a distance δε from the absorbing surface

I p(y ,∞): probability that a diffusing particle, initiated at point
y ∈ ∂Ωe, diffuses to infinity without returning to the absorbing
surface
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Figure: First- and last-passage edge computations
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Problems in Electrostatics/Materials

Unit Cube Edge Distribution

Figure: The slope, that is, the exponent of the edge distribution near the
corner is approximately −0.20, that is, σe ∼ δ−1/5

c
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Walk on the Boundary Algorithm

I µ(y) = − 1
4π

∂φ

∂n
(y) ; surface charge density

I φ(x) =

∫
∂Ω

1
|x − y |

µ(y)dσ(y) ; electrostatic potential

Limit properties of the normal derivative (x → y outside of Ω):

µ(y) =

∫
∂Ω

n(y) · (y − y ′)
2π|y − y ′|3

µ(y ′)dσ(y ′)

By the ergodic theorem (convex Ω)∫
∂Ω

v(y)π∞(y)dσ(y) = lim
N→∞

1
N

N∑
n=1

v(yn)
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Walk on the Boundary Algorithm

I π∞ - stationary distribution of Markov chain {yn} with transition

density p(yn → yn+1) =
n(yn+1) · (yn+1 − yn)

2π|yn+1 − yn|3
I µ = Cπ∞
I C - capacitance if φ|∂Ω = 1
I φ(x) = 1 for x ∈ Ω

C = ( lim
N→∞

1
N

N∑
n=1

v(yn))−1 for v(y) =
1

x − y
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Capacitance of the Unit Cube

Reitan-Higgins (1951) 0.6555
Greenspan-Silverman (1965) 0.661

Cochran (1967) 0.6596
Goto-Shi-Yoshida (1992) 0.6615897 ± 5 × 10−7

Conjectured Hubbard-Douglas (1993) 0.65946...
Douglas-Zhou-Hubbard (1994) 0.6632 ± 0.0003
Given-Hubbard-Douglas (1997) 0.660675 ± 0.00001

Read (1997) 0.6606785± 0.000003
First passage method (2001) 0.660683± 0.000005

Walk on boundary algorithm (2002) 0.6606780± 0.0000004
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Continuum Biochemical Electrostatics
Motivation

I Experimental Data: Folding, stability & binding behavior of
biomolecules can be modulated by changes in salt concentration

I Physical Model: Implicit solvent-based Poisson-Boltzmann model
can provide accurate predictions of salt dependent behavior of
biomolecules

I Mathematical Model: Elliptic boundary-value problems
Specific Problems

I Electrostatic free energy for linear case: only finite number of
electrostatic potential point values

I Dependence of energy on geometry: needs accurate treatment
I Singularities in solution: have to be taken into account

analytically
I Behavior at infinity: must be exactly enforced
I Functional dependence on salt concentration: needs accurate

estimate
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Monte Carlo Methods: Properties
I Monte Carlo methods for solving Poisson and linearized

Poisson-Boltzmann equations (PBEs)
I Analytical treatment of geometry, singularities, behavior at infinity
I Capability to compute point values of solution (energies) and its

spatial derivatives (forces)
I New methods for the flux boundary conditions (exact integral

formulation)
I Simultaneous correlated computation of values at different salt

concentrations
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Mathematical Model: Molecular Geometry

Figure: Biomolecule with dielectric εi and region region Gi is in solution with
dielectric εe and region Ge. On the boundary of the biomolecule, electrostatic
potential and normal component of dielectric displacement continue
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Mathematical Model

Mathematical Model: Partial Differential Equations
I Poisson equation for the electrostatic potential, Φi , and point

charges, Qm, inside a molecule (in CGS units):

εi ∆Φi (x) + 4π
M∑

m=1

Qmδ(x − x (m)) = 0 , x ∈ Gi

I For 1-1 salt (such as NaCl) Poisson-Boltzmann equation (PBE):

∆Φe(x)− κ2 sinh(Φe(x)) = 0 , x ∈ Ge ,

but we only consider the linearized PBE:

∆Φe(x)− κ2Φe(x) = 0 , x ∈ Ge

I For one-surface model: continuity condition on the dielectric
boundary

Φi = Φe , εi
∂Φi

∂n(y)
= εe

∂Φe

∂n(y)
, y ∈ Γ



Monte Carlo Methods for Partial Differential Equations: A Personal Journey

Mathematical Model

Mathematical Model: Partial Differential Equations
I Poisson equation for the electrostatic potential, Φi , and point

charges, Qm, inside a molecule (in CGS units):

εi ∆Φi (x) + 4π
M∑

m=1

Qmδ(x − x (m)) = 0 , x ∈ Gi

I For 1-1 salt (such as NaCl) Poisson-Boltzmann equation (PBE):

∆Φe(x)− κ2 sinh(Φe(x)) = 0 , x ∈ Ge ,

but we only consider the linearized PBE:

∆Φe(x)− κ2Φe(x) = 0 , x ∈ Ge

I For one-surface model: continuity condition on the dielectric
boundary

Φi = Φe , εi
∂Φi

∂n(y)
= εe

∂Φe

∂n(y)
, y ∈ Γ



Monte Carlo Methods for Partial Differential Equations: A Personal Journey

Mathematical Model

Mathematical Model: Partial Differential Equations
I Poisson equation for the electrostatic potential, Φi , and point

charges, Qm, inside a molecule (in CGS units):

εi ∆Φi (x) + 4π
M∑

m=1

Qmδ(x − x (m)) = 0 , x ∈ Gi

I For 1-1 salt (such as NaCl) Poisson-Boltzmann equation (PBE):

∆Φe(x)− κ2 sinh(Φe(x)) = 0 , x ∈ Ge ,

but we only consider the linearized PBE:

∆Φe(x)− κ2Φe(x) = 0 , x ∈ Ge

I For one-surface model: continuity condition on the dielectric
boundary

Φi = Φe , εi
∂Φi

∂n(y)
= εe

∂Φe

∂n(y)
, y ∈ Γ



Monte Carlo Methods for Partial Differential Equations: A Personal Journey

Mathematical Model

Mathematical Model: Debye-Hückle Parameter

Dependence on salt in the Debye-Hückle parameter (units as per
Kirkwood):

κ2 =
8πNAe2Cs

εe1000kBT
, where

I Cs – concentration of ions (in moles)
I NA – Avogadro’s number
I e – elementary protonic charge
I kB – Boltzmann’s constant
I εe – dielectric permittivity outside the molecule
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Electrostatic Potential and Energy

Electrostatic Potential and Energy
I Point values of the potential: Φ(x) = Φrf (x) + Φc(x)

Here, singular part of Φ:

Φc(x) =
M∑

m=1

Qm

|x − x (m)|

I Reaction field electrostatic free energy of a molecule is linear
combination of point values of the regular part of the electrostatic
potential:

Wrf =
1
2

M∑
m=1

Φrf (x (m))Qm ,

I Electrostatic solvation free energy = difference between the
energy for a molecule in solvent with a given salt concentration
and the energy for the same molecule in vacuum:

∆Gelec
solv = Wrf (εi , εe, κ)−Wrf (εi ,1,0)
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Mathematical Model

The Feynman-Kac Formula

The Feynman-Kac Formula

I Consider the Dirichlet problem for the Poisson equation in the
domain Ω ∈ Rd

−1
2

∆u(x) = g(x), x ∈ Ω, u(x) = f (x), x ∈ ∂Ω

I If we assume g(x) = 0, then we have the Laplace equation, and
the solution at the point y ∈ Ω is given as the following Brownian
motion expectation:

u(y) = E[f (βy (τ∂Ω))],

where βy (·) is Brownian motion starting at the point y , and τ∂Ω is
the first-passage time of this Brownian motion,
i.e. τ∂Ω = inft{βy (t) ∈ ∂Ω}
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Mathematical Model

The Feynman-Kac Formula

The Feynman-Kac Formula
I If we set f (x) = 0 and have g(x) 6= 0, the solution is

u(y) = E
[ ∫ τ∂Ω

0
g(βy (s)) ds

]
I By linear superposition, the solution to Poisson equation is given

probabilistically as

u(y) = E
[ ∫ τ∂Ω

0
g(βy (s)) ds + f (βy (τ∂Ω))

]
I The linearized Poisson-Boltzmann equation is given by

∆u(x)−κ2u(x) = 0, x ∈ Ω, u(x) = f (x), x ∈ ∂Ω, u → 0 as |x | → ∞

and has Wiener integral representation:

u(y) = E
[
f (βy (τ∂Ω))e−

∫ τ∂Ω
0 κ2 ds

]
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Fast Exit Point Calculations

‘Walk-on-Spheres’ Algorithm

‘Walk-on-Spheres’ Algorithm

I Walk-on-spheres (WOS) algorithm for general domains with a
regular boundary

I Define a Markov chain {xi , i = 1,2, . . .}
I Set x0 = x (m) for some m, xi = xi−1 + diωi , i = 1,2, . . ., where

1. di = d(xi−1) is distance from xi−1 to Γ
2. {ωi} is sequence of independent unit isotropic vectors
3. xi is the exit point from the ball, B(xi−1, d(xi−1)), for a Brownian

motion starting at xi−1

I Outside the molecule, on every step, walk-on-spheres terminates

with probability 1− q(κ,di ), where q(κ,di ) =
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‘Walk-on-Spheres’ and ‘Walk-in-Subdomains’
I For general domains, an efficient way to simulate exit points is a

combination of
1. Inside the molecule: ‘walk-in-subdomains’
2. Outside the molecule ‘walk-on-spheres’

I The whole domain, Gi , is represented as a union of intersecting
subdomains:

Gi =
M⋃

m=1

Gm

I ‘Walk-in-Subdomains’: Simulate exit point separately in every Gm

1. x0 = x , x1, . . . , xN – Markov chain, every xi+1 is an exit point from
the corresponding subdomain for Brownian motion starting at xi

2. For spherical subdomains, B(xm
i ,R

m
i ), exit points are distributed in

accordance with the Poisson kernel:

1
4πRm

i

|xi − xm
i |2 − (Rm

i )2

|xi − xi+1|3
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‘Walk-on-Spheres’ and ‘Walk-in-Subdomains’

Figure: Walk in subdomains example
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Monte Carlo Treatment of Boundary Conditions

I Randomization of finite-difference approximation with step, h.
u(y) = Eu(x) + O(h2)

I Exact treatment of boundary conditions (mean-value theorem)
for boundary point, y , in the ball B(y ,a) with surface S(y ,a):

u(y) =
εe

εe + εi

∫
Se(y,a)

1
2πa2

κa
sinh(κa)

ue

+
εi

εe + εi

∫
Si (y,a)

1
2πa2

κa
sinh(κa)

ui (22)

− εe − εi
εe + εi

∫
Γ

⋂
B(y,a)\{y}

cosϕyx

2π|y − x |2
Qκ,au

+
εi

εe + εi

∫
Bi (y,a)

[−2κ2Φκ]ui
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Monte Carlo Treatment of Boundary Conditions

Randomized approximation to (22): u(y) = Eu(x) + O((a/2R)3):
I With probability pe exit to solvent:

1. x is chosen isotropically on the surface of auxiliary sphere,
S+(y , a), that lies above tangent plane

2. Walker survives with probability
κa

sinh(κa)

I With probability pi = 1− pe:
1. x is chosen isotropically in the solid angle below tangent plane;

with probability −2κ2Φκ & sampled in Bi (y , a) (reenter molecule)
2. With the complementary probability x is sampled on the surface of

auxiliary sphere, S−(y , a), that lies below tangent plane
3. x reenters molecule with conditional probability 1− a/2R and
4. x exits to solvent with conditional probability a/2R
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Monte Carlo Treatment of Boundary Conditions

In the exterior, probability of terminating Markov chain depends
linearly on the initial distance to the boundary, d0. Therefore,⇒
Mean number of returns to the boundary is O(d0)−1

I Finite-difference approximation of boundary conditions, ε = h2

Mean number of steps in the algorithm is O(h−1 log(h) f (κ)), f is
a decreasing function (f (κ) = O(log(κ)) for small κ). Estimates
for point values of the potential and free energy are O(h)-biased

I New treatment of boundary conditions provides O(a)2-biased
and more efficient Monte Carlo algorithm. Mean number of
steps is O((a)−1 log(a) f (κ)), a = a/2R.

I More subtle approximation to (22) will provide even more efficient
Monte Carlo estimates



Monte Carlo Methods for Partial Differential Equations: A Personal Journey

Fast Exit Point Calculations

Monte Carlo Treatment of Boundary Conditions

Monte Carlo Treatment of Boundary Conditions

In the exterior, probability of terminating Markov chain depends
linearly on the initial distance to the boundary, d0. Therefore,⇒
Mean number of returns to the boundary is O(d0)−1

I Finite-difference approximation of boundary conditions, ε = h2

Mean number of steps in the algorithm is O(h−1 log(h) f (κ)), f is
a decreasing function (f (κ) = O(log(κ)) for small κ). Estimates
for point values of the potential and free energy are O(h)-biased

I New treatment of boundary conditions provides O(a)2-biased
and more efficient Monte Carlo algorithm. Mean number of
steps is O((a)−1 log(a) f (κ)), a = a/2R.

I More subtle approximation to (22) will provide even more efficient
Monte Carlo estimates



Monte Carlo Methods for Partial Differential Equations: A Personal Journey

Fast Exit Point Calculations

Monte Carlo Treatment of Boundary Conditions

Monte Carlo Treatment of Boundary Conditions

In the exterior, probability of terminating Markov chain depends
linearly on the initial distance to the boundary, d0. Therefore,⇒
Mean number of returns to the boundary is O(d0)−1

I Finite-difference approximation of boundary conditions, ε = h2

Mean number of steps in the algorithm is O(h−1 log(h) f (κ)), f is
a decreasing function (f (κ) = O(log(κ)) for small κ). Estimates
for point values of the potential and free energy are O(h)-biased

I New treatment of boundary conditions provides O(a)2-biased
and more efficient Monte Carlo algorithm. Mean number of
steps is O((a)−1 log(a) f (κ)), a = a/2R.

I More subtle approximation to (22) will provide even more efficient
Monte Carlo estimates



Monte Carlo Methods for Partial Differential Equations: A Personal Journey

Monte Carlo Estimates

Monte Carlo Estimates

Monte Carlo Estimates

I The estimate for the reaction-field potential point value:
ξ[Φrf ](x (m)) = −Φc(x∗1 )

+

Nins∑
j=2

Fj (κ) (Φc(x ins
j )− Φc(x∗j,ins)) (23)

I Here {x∗j,ins} is a sequence of boundary points, after which the
random walker moves inside the domain, Gi , to x ins

j
I The estimate for the reaction-field energy:

ξ[Wrf ] =
1
2

M∑
m=1

Qm ξ[Φrf ](x (m)) (24)
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A Picture: The Algorithm for a Single Spherical Atom
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Monte Carlo Estimates

Monte Carlo Estimates

The Algorithm in Pictures: Walk to∞ in One Step

Figure: κ = 0, p∞ = 1− REnclosed/dist
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Monte Carlo Algorithm’s Computational Complexity
Cost of a single trajectory

I Number of steps is random walk is not dependent on M, the
number of atoms

I The cost of finding the nearest sphere is M log2(M) due to
optimizations
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Figure: The CPU time per atom per trajectory is plotted as function of number of atoms. For small
number of atoms the CPU time scales linearly and for large number of atoms it asymptotically
scales logarithmically
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Computational Geometry

Geometry: Problem Descriptions

There are many geometric problems that arise in this algorithm:

I Efficiently determining if a point is on the surface of the molecule
or inside of it (for interior walks)

I Efficiently determining the closest sphere to a given exterior point
(for walks outside molecule)

I Efficiently determining if a query point is inside of the convex hull
of the molecule

I Efficiently finding the largest possible sphere enclosing a query
point for external walks
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Correlated and Uncorrelated Sampling

I Correlated sampling in Monte Carlo is essential for two important
reasons

1. To obtain smooth curves with a minimum of sampling
(function-wise vs. point-wise sampling)

2. To obtain accurate results from quantities defined as the
differences of Monte Carlo estimates

I With this correlated sampling sampling you can get a “smooth
curve" with three orders of magnitude less sampling, note: you
still have O(N−1/2) errors, just in “curve space," not point by point
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Correlated Sampling: Salt Concentration
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Figure: Electrostatic Solvation free Energy of 3icb calculated with three four conditions:
uncorrelated sampling with 500 number of trajectories per concentration, uncorrelated sampling
with 1500 number of trajectories per concentration, uncorrelated sampling with 4500 number of
iterations, and correlated sampling with 500 number of trajectories
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Correlated and Uncorrelated Sampling

Dependence on Salt Concentration

I Values of scalar energies as a function of external salt
concentration are important

1. Smooth curves of internal energy vs. salt concentration (see above)
2. Numerical estimate of the derivative as salt concentration vanishes

I For κ used in simulations, Fj (κ) = 1
I For an arbitrary κ′ > κ:

Fj (κ
′) is multiplied by the ratio

q(κ′,d)

q(κ,d)
on every step of the WOS

in the exterior
I The results obtained with the estimates (23) and (24) for different

values of κ are highly correlated
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Correlated Sampling: Binding Calculations

I Binding computation requires three energy computations
E(A + B)− E(A)− E(B)

I Monte Carlo requires “help" when differencing
I We use the reproducibility in SPRNG to do this effectively

1. Unbound: when exiting the molecule the seed is stored using
SPRNG tools

2. Bound: walks resume at the exit points with the same random
number streams and reusing

3. At this exit point, only the exit point information is required
I The leads to correlation between unbound and bound energy

computations that decreases as the walk length increases (κ2

decreases)
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Computational Results

Sampling Error and Bias

I In Monte Carlo there are biases (errors) and sampling error
1. Sampling error is based on standard error O(N−1/2)
2. Difference between expected value and PDE solution is bias

I Capture thickness (ε): bias is O(ε)
I Auxiliary sphere radius (a): bias is O(a3)
I Effective Van der Waals sphere radius, R
I Overall bias:

( a
2R

)3
+

(
ε

2R

)
3. Var [

∑
i qi Φ(xi )] =

∑
i q2

i Var [Φ(xi )]
4. Given a desired variance, divide it evenly over this sum
5. Running time ∝ | ln(ε)|

a
6. Can reduce running time by 2 orders of magnitude by bias/variance

balancing and using larger ε, a and ANN
7. Large ANN means errors in drawing the largest sphere outside the

molecule for WOS
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Timing: Better Than Expected

Figure: O(M log M)?
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Conclusions
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1. Can do computation without knowing charges until the end (an
inverse)

2. Simple to examine many charge distributions in a perfectly
correlated setting
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2. Global computation of field variables and their visualization
3. Nonlinear BVPs perhaps via branching processes
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3. Accuracy issues related to the Van der Waals surface
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1. Error/bias/variance balancing
2. Importance sampling and the outer walks
3. WOB to eliminate walks outside
4. QMC methods



Monte Carlo Methods for Partial Differential Equations: A Personal Journey

Conclusions and Future Work

Future Work

I Further algorithmic development
1. Computation of gradients using existing Markov chains
2. Global computation of field variables and their visualization
3. Nonlinear BVPs perhaps via branching processes
4. Using “Walk-on-the-Boundary" (WOB) techniques

I Geometric Issues
1. Computation of the three region model problem
2. More complicated surfaces (solvent-excluded and ion-excluded)
3. Accuracy issues related to the Van der Waals surface

I Optimize the performance
1. Error/bias/variance balancing
2. Importance sampling and the outer walks
3. WOB to eliminate walks outside
4. QMC methods



Monte Carlo Methods for Partial Differential Equations: A Personal Journey

Conclusions and Future Work

Future Work

I Further algorithmic development
1. Computation of gradients using existing Markov chains
2. Global computation of field variables and their visualization
3. Nonlinear BVPs perhaps via branching processes
4. Using “Walk-on-the-Boundary" (WOB) techniques

I Geometric Issues
1. Computation of the three region model problem
2. More complicated surfaces (solvent-excluded and ion-excluded)
3. Accuracy issues related to the Van der Waals surface

I Optimize the performance
1. Error/bias/variance balancing
2. Importance sampling and the outer walks
3. WOB to eliminate walks outside
4. QMC methods



Monte Carlo Methods for Partial Differential Equations: A Personal Journey

Conclusions and Future Work

Future Work

I Further algorithmic development
1. Computation of gradients using existing Markov chains
2. Global computation of field variables and their visualization
3. Nonlinear BVPs perhaps via branching processes
4. Using “Walk-on-the-Boundary" (WOB) techniques

I Geometric Issues
1. Computation of the three region model problem
2. More complicated surfaces (solvent-excluded and ion-excluded)
3. Accuracy issues related to the Van der Waals surface

I Optimize the performance
1. Error/bias/variance balancing
2. Importance sampling and the outer walks
3. WOB to eliminate walks outside
4. QMC methods



Monte Carlo Methods for Partial Differential Equations: A Personal Journey

Conclusions and Future Work

Future Work

I Further algorithmic development
1. Computation of gradients using existing Markov chains
2. Global computation of field variables and their visualization
3. Nonlinear BVPs perhaps via branching processes
4. Using “Walk-on-the-Boundary" (WOB) techniques

I Geometric Issues
1. Computation of the three region model problem
2. More complicated surfaces (solvent-excluded and ion-excluded)
3. Accuracy issues related to the Van der Waals surface

I Optimize the performance
1. Error/bias/variance balancing
2. Importance sampling and the outer walks
3. WOB to eliminate walks outside
4. QMC methods



Monte Carlo Methods for Partial Differential Equations: A Personal Journey

Conclusions and Future Work

Future Work

I Further algorithmic development
1. Computation of gradients using existing Markov chains
2. Global computation of field variables and their visualization
3. Nonlinear BVPs perhaps via branching processes
4. Using “Walk-on-the-Boundary" (WOB) techniques

I Geometric Issues
1. Computation of the three region model problem
2. More complicated surfaces (solvent-excluded and ion-excluded)
3. Accuracy issues related to the Van der Waals surface

I Optimize the performance
1. Error/bias/variance balancing
2. Importance sampling and the outer walks
3. WOB to eliminate walks outside
4. QMC methods



Monte Carlo Methods for Partial Differential Equations: A Personal Journey

Conclusions and Future Work

Future Work

I Further algorithmic development
1. Computation of gradients using existing Markov chains
2. Global computation of field variables and their visualization
3. Nonlinear BVPs perhaps via branching processes
4. Using “Walk-on-the-Boundary" (WOB) techniques

I Geometric Issues
1. Computation of the three region model problem
2. More complicated surfaces (solvent-excluded and ion-excluded)
3. Accuracy issues related to the Van der Waals surface

I Optimize the performance
1. Error/bias/variance balancing
2. Importance sampling and the outer walks
3. WOB to eliminate walks outside
4. QMC methods



Monte Carlo Methods for Partial Differential Equations: A Personal Journey

Conclusions and Future Work

Future Work

I Further algorithmic development
1. Computation of gradients using existing Markov chains
2. Global computation of field variables and their visualization
3. Nonlinear BVPs perhaps via branching processes
4. Using “Walk-on-the-Boundary" (WOB) techniques

I Geometric Issues
1. Computation of the three region model problem
2. More complicated surfaces (solvent-excluded and ion-excluded)
3. Accuracy issues related to the Van der Waals surface

I Optimize the performance
1. Error/bias/variance balancing
2. Importance sampling and the outer walks
3. WOB to eliminate walks outside
4. QMC methods



Monte Carlo Methods for Partial Differential Equations: A Personal Journey

Conclusions and Future Work

Future Work

I Further algorithmic development
1. Computation of gradients using existing Markov chains
2. Global computation of field variables and their visualization
3. Nonlinear BVPs perhaps via branching processes
4. Using “Walk-on-the-Boundary" (WOB) techniques

I Geometric Issues
1. Computation of the three region model problem
2. More complicated surfaces (solvent-excluded and ion-excluded)
3. Accuracy issues related to the Van der Waals surface

I Optimize the performance
1. Error/bias/variance balancing
2. Importance sampling and the outer walks
3. WOB to eliminate walks outside
4. QMC methods



Monte Carlo Methods for Partial Differential Equations: A Personal Journey

Conclusions and Future Work

Future Work

I Further algorithmic development
1. Computation of gradients using existing Markov chains
2. Global computation of field variables and their visualization
3. Nonlinear BVPs perhaps via branching processes
4. Using “Walk-on-the-Boundary" (WOB) techniques

I Geometric Issues
1. Computation of the three region model problem
2. More complicated surfaces (solvent-excluded and ion-excluded)
3. Accuracy issues related to the Van der Waals surface

I Optimize the performance
1. Error/bias/variance balancing
2. Importance sampling and the outer walks
3. WOB to eliminate walks outside
4. QMC methods



Monte Carlo Methods for Partial Differential Equations: A Personal Journey

Conclusions and Future Work

Future Work

I Further algorithmic development
1. Computation of gradients using existing Markov chains
2. Global computation of field variables and their visualization
3. Nonlinear BVPs perhaps via branching processes
4. Using “Walk-on-the-Boundary" (WOB) techniques

I Geometric Issues
1. Computation of the three region model problem
2. More complicated surfaces (solvent-excluded and ion-excluded)
3. Accuracy issues related to the Van der Waals surface

I Optimize the performance
1. Error/bias/variance balancing
2. Importance sampling and the outer walks
3. WOB to eliminate walks outside
4. QMC methods



Monte Carlo Methods for Partial Differential Equations: A Personal Journey

Conclusions and Future Work

Future Work

I Further algorithmic development
1. Computation of gradients using existing Markov chains
2. Global computation of field variables and their visualization
3. Nonlinear BVPs perhaps via branching processes
4. Using “Walk-on-the-Boundary" (WOB) techniques

I Geometric Issues
1. Computation of the three region model problem
2. More complicated surfaces (solvent-excluded and ion-excluded)
3. Accuracy issues related to the Van der Waals surface

I Optimize the performance
1. Error/bias/variance balancing
2. Importance sampling and the outer walks
3. WOB to eliminate walks outside
4. QMC methods



Monte Carlo Methods for Partial Differential Equations: A Personal Journey

Conclusions and Future Work

Future Work

I Further algorithmic development
1. Computation of gradients using existing Markov chains
2. Global computation of field variables and their visualization
3. Nonlinear BVPs perhaps via branching processes
4. Using “Walk-on-the-Boundary" (WOB) techniques

I Geometric Issues
1. Computation of the three region model problem
2. More complicated surfaces (solvent-excluded and ion-excluded)
3. Accuracy issues related to the Van der Waals surface

I Optimize the performance
1. Error/bias/variance balancing
2. Importance sampling and the outer walks
3. WOB to eliminate walks outside
4. QMC methods



Monte Carlo Methods for Partial Differential Equations: A Personal Journey

Conclusions and Future Work

Future Work

I Further algorithmic development
1. Computation of gradients using existing Markov chains
2. Global computation of field variables and their visualization
3. Nonlinear BVPs perhaps via branching processes
4. Using “Walk-on-the-Boundary" (WOB) techniques

I Geometric Issues
1. Computation of the three region model problem
2. More complicated surfaces (solvent-excluded and ion-excluded)
3. Accuracy issues related to the Van der Waals surface

I Optimize the performance
1. Error/bias/variance balancing
2. Importance sampling and the outer walks
3. WOB to eliminate walks outside
4. QMC methods



Monte Carlo Methods for Partial Differential Equations: A Personal Journey

Conclusions and Future Work

Bibliography

[T. Mackoy, R. C. Harris, J. Johnson, M. Mascagni and
M. O. Fenley (2011)] Numerical Optimization of a
Walk-on-Spheres Solver for the Linear Poisson-Boltzmann
Equation Communications in Computational Physics, in the
press.

[M. Fenley, M. Mascagni, J. McClain, A. Silalahi and N. Simonov
(2010)] Using Correlated Monte Carlo Sampling for Efficiently
Solving the Linearized Poisson-Boltzmann Equation Over a
Broad Range of Salt Concentrations Journal of Chemical Theory
and Computation, 6(1): 300–314.

[N. Simonov and M. Mascagni and M. O. Fenley (2007)] Monte
Carlo Based Linear Poisson-Boltzmann Approach Makes
Accurate Salt-Dependent Solvation Energy Predictions Possible
Journal of Chemical Physics, 187(18), article #185105, 6 pages.



Monte Carlo Methods for Partial Differential Equations: A Personal Journey

Conclusions and Future Work

Bibliography

[T. Mackoy, R. C. Harris, J. Johnson, M. Mascagni and
M. O. Fenley (2011)] Numerical Optimization of a
Walk-on-Spheres Solver for the Linear Poisson-Boltzmann
Equation Communications in Computational Physics, in the
press.

[M. Fenley, M. Mascagni, J. McClain, A. Silalahi and N. Simonov
(2010)] Using Correlated Monte Carlo Sampling for Efficiently
Solving the Linearized Poisson-Boltzmann Equation Over a
Broad Range of Salt Concentrations Journal of Chemical Theory
and Computation, 6(1): 300–314.

[N. Simonov and M. Mascagni and M. O. Fenley (2007)] Monte
Carlo Based Linear Poisson-Boltzmann Approach Makes
Accurate Salt-Dependent Solvation Energy Predictions Possible
Journal of Chemical Physics, 187(18), article #185105, 6 pages.



Monte Carlo Methods for Partial Differential Equations: A Personal Journey

Conclusions and Future Work

Bibliography

[T. Mackoy, R. C. Harris, J. Johnson, M. Mascagni and
M. O. Fenley (2011)] Numerical Optimization of a
Walk-on-Spheres Solver for the Linear Poisson-Boltzmann
Equation Communications in Computational Physics, in the
press.

[M. Fenley, M. Mascagni, J. McClain, A. Silalahi and N. Simonov
(2010)] Using Correlated Monte Carlo Sampling for Efficiently
Solving the Linearized Poisson-Boltzmann Equation Over a
Broad Range of Salt Concentrations Journal of Chemical Theory
and Computation, 6(1): 300–314.

[N. Simonov and M. Mascagni and M. O. Fenley (2007)] Monte
Carlo Based Linear Poisson-Boltzmann Approach Makes
Accurate Salt-Dependent Solvation Energy Predictions Possible
Journal of Chemical Physics, 187(18), article #185105, 6 pages.



Monte Carlo Methods for Partial Differential Equations: A Personal Journey

Conclusions and Future Work

Bibliography

[M. Mascagni and N. A. Simonov (2004)] Monte Carlo Methods
for Calculating Some Physical Properties of Large Molecules
SIAM Journal on Scientific Computing, 26(1): 339–357.

[N. A. Simonov and M. Mascagni (2004)] Random Walk
Algorithms for Estimating Effective Properties of Digitized Porous
Media Monte Carlo Methods and Applications, 10: 599–608.

[M. Mascagni and N. A. Simonov (2004)] The Random Walk on
the Boundary Method for Calculating Capacitance Journal of
Computational Physics, 195: 465–473.

[A. Karaivanova, N. A. Simonov and M. Mascagni(2004)] Parallel
Quasirandom Walks on the Boundary Monte Carlo Methods and
Applications, 11: 311–320.



Monte Carlo Methods for Partial Differential Equations: A Personal Journey

Conclusions and Future Work

Bibliography

[M. Mascagni and N. A. Simonov (2004)] Monte Carlo Methods
for Calculating Some Physical Properties of Large Molecules
SIAM Journal on Scientific Computing, 26(1): 339–357.

[N. A. Simonov and M. Mascagni (2004)] Random Walk
Algorithms for Estimating Effective Properties of Digitized Porous
Media Monte Carlo Methods and Applications, 10: 599–608.

[M. Mascagni and N. A. Simonov (2004)] The Random Walk on
the Boundary Method for Calculating Capacitance Journal of
Computational Physics, 195: 465–473.

[A. Karaivanova, N. A. Simonov and M. Mascagni(2004)] Parallel
Quasirandom Walks on the Boundary Monte Carlo Methods and
Applications, 11: 311–320.



Monte Carlo Methods for Partial Differential Equations: A Personal Journey

Conclusions and Future Work

Bibliography

[M. Mascagni and N. A. Simonov (2004)] Monte Carlo Methods
for Calculating Some Physical Properties of Large Molecules
SIAM Journal on Scientific Computing, 26(1): 339–357.

[N. A. Simonov and M. Mascagni (2004)] Random Walk
Algorithms for Estimating Effective Properties of Digitized Porous
Media Monte Carlo Methods and Applications, 10: 599–608.

[M. Mascagni and N. A. Simonov (2004)] The Random Walk on
the Boundary Method for Calculating Capacitance Journal of
Computational Physics, 195: 465–473.

[A. Karaivanova, N. A. Simonov and M. Mascagni(2004)] Parallel
Quasirandom Walks on the Boundary Monte Carlo Methods and
Applications, 11: 311–320.



Monte Carlo Methods for Partial Differential Equations: A Personal Journey

Conclusions and Future Work

Bibliography

[M. Mascagni and N. A. Simonov (2004)] Monte Carlo Methods
for Calculating Some Physical Properties of Large Molecules
SIAM Journal on Scientific Computing, 26(1): 339–357.

[N. A. Simonov and M. Mascagni (2004)] Random Walk
Algorithms for Estimating Effective Properties of Digitized Porous
Media Monte Carlo Methods and Applications, 10: 599–608.

[M. Mascagni and N. A. Simonov (2004)] The Random Walk on
the Boundary Method for Calculating Capacitance Journal of
Computational Physics, 195: 465–473.

[A. Karaivanova, N. A. Simonov and M. Mascagni(2004)] Parallel
Quasirandom Walks on the Boundary Monte Carlo Methods and
Applications, 11: 311–320.



Monte Carlo Methods for Partial Differential Equations: A Personal Journey

Conclusions and Future Work

Bibliography

[C.-O. Hwang and M. Mascagni (2003)] Analysis and
Comparison of Green’s Function First-Passage Algorithms with
“Walk on Spheres” Algorithms Mathematics and Computers in
Simulation, 63: 605–613.

[C.-O. Hwang and M. Mascagni (2001)] Efficient modified “walk
on spheres" algortihm for the linearized Poisson-Boltzmann
equation Applied Physics Letters, 78: 787–789.

[C.-O. Hwang, J. A. Given and M. Mascagni (2001)] The
Simulation-Tabulation Method for Classical Diffusion Monte Carlo
Journal of Computational Physics, 174: 925–946.

[C.-O. Hwang, J. A. Given and M. Mascagni (2000)] On the Rapid
Calculation of Permeability for Porous Media Using Brownian
Motion Paths Physics of Fluids, 12: 1699–1709.



Monte Carlo Methods for Partial Differential Equations: A Personal Journey

Conclusions and Future Work

Bibliography

[C.-O. Hwang and M. Mascagni (2003)] Analysis and
Comparison of Green’s Function First-Passage Algorithms with
“Walk on Spheres” Algorithms Mathematics and Computers in
Simulation, 63: 605–613.

[C.-O. Hwang and M. Mascagni (2001)] Efficient modified “walk
on spheres" algortihm for the linearized Poisson-Boltzmann
equation Applied Physics Letters, 78: 787–789.

[C.-O. Hwang, J. A. Given and M. Mascagni (2001)] The
Simulation-Tabulation Method for Classical Diffusion Monte Carlo
Journal of Computational Physics, 174: 925–946.

[C.-O. Hwang, J. A. Given and M. Mascagni (2000)] On the Rapid
Calculation of Permeability for Porous Media Using Brownian
Motion Paths Physics of Fluids, 12: 1699–1709.



Monte Carlo Methods for Partial Differential Equations: A Personal Journey

Conclusions and Future Work

Bibliography

[C.-O. Hwang and M. Mascagni (2003)] Analysis and
Comparison of Green’s Function First-Passage Algorithms with
“Walk on Spheres” Algorithms Mathematics and Computers in
Simulation, 63: 605–613.

[C.-O. Hwang and M. Mascagni (2001)] Efficient modified “walk
on spheres" algortihm for the linearized Poisson-Boltzmann
equation Applied Physics Letters, 78: 787–789.

[C.-O. Hwang, J. A. Given and M. Mascagni (2001)] The
Simulation-Tabulation Method for Classical Diffusion Monte Carlo
Journal of Computational Physics, 174: 925–946.

[C.-O. Hwang, J. A. Given and M. Mascagni (2000)] On the Rapid
Calculation of Permeability for Porous Media Using Brownian
Motion Paths Physics of Fluids, 12: 1699–1709.



Monte Carlo Methods for Partial Differential Equations: A Personal Journey

Conclusions and Future Work

Bibliography

[C.-O. Hwang and M. Mascagni (2003)] Analysis and
Comparison of Green’s Function First-Passage Algorithms with
“Walk on Spheres” Algorithms Mathematics and Computers in
Simulation, 63: 605–613.

[C.-O. Hwang and M. Mascagni (2001)] Efficient modified “walk
on spheres" algortihm for the linearized Poisson-Boltzmann
equation Applied Physics Letters, 78: 787–789.

[C.-O. Hwang, J. A. Given and M. Mascagni (2001)] The
Simulation-Tabulation Method for Classical Diffusion Monte Carlo
Journal of Computational Physics, 174: 925–946.

[C.-O. Hwang, J. A. Given and M. Mascagni (2000)] On the Rapid
Calculation of Permeability for Porous Media Using Brownian
Motion Paths Physics of Fluids, 12: 1699–1709.



Monte Carlo Methods for Partial Differential Equations: A Personal Journey

Conclusions and Future Work

c© Michael Mascagni, 2012


	A Little History on Monte Carlo Methods for PDEs
	Some Examples Using This for Computing Elliptic Problems
	The Walk on Spheres Method
	Problems in Electrostatics/Materials
	Various Acceleration Techniques for Elliptic PDEs

	Mathematical Model
	Electrostatic Potential and Energy
	The Feynman-Kac Formula

	Fast Exit Point Calculations
	`Walk-on-Spheres' Algorithm
	Walk-in-Subdomains
	Monte Carlo Treatment of Boundary Conditions

	Monte Carlo Estimates
	Monte Carlo Estimates
	Computational Geometry
	Correlated and Uncorrelated Sampling

	Computational Results
	Conclusions and Future Work

