Early Mathematical Astronomy: Stories from the Lost Years

Dennis Duke
Florida State University
Neugebauer Conference 2010

Recent developments in Greek kinematic astronomy during the years between Hipparchus and Ptolemy

> Papyrus Fouad 267A

Antikythera Mechanism
Keskinto Inscription
India: trigonometry, planets, moon

Standard Solar Model
 (according to the Almagest)

tropical year $\quad Y_{t}=365^{d}+\frac{1}{4}-\frac{1}{300}$
sidereal year $\quad Y_{s}=365^{d}+\frac{1}{4}+\frac{1}{147}$
precession $\quad \pi_{t}=\frac{1^{\circ}}{100 t y}$
single eccentric anomaly: $e=2 ; 30$
tropically fixed apogee: $A=65 ; 30^{\circ}$

$$
R=60
$$

P. Fouad 267 A

Anne Tihon, Ptolemy in Perspective (2010) supplemented by Jones, PiP, and Britton (unpub.)

- For a horoscope, calculates the mean and tropical longitude of the Sun at +130 Nov 9 3:20 AM (AMT) (9 ${ }^{\text {th }}$ seasonal hour of the night)
- Three year lengths 'conforming to the observations of Hipparchus':

$$
\begin{array}{ll}
Y_{s}=365^{d}+\frac{1}{4}+\frac{1}{102} & \\
Y_{j}=365^{d}+\frac{1}{4} & \pi_{j}=\frac{6^{\circ}}{625 \mathrm{ey}} \\
Y_{t}=365^{d}+\frac{1}{4}-\frac{1}{309} & \pi_{t}=\frac{8^{\circ}}{625 e y} \simeq \frac{1^{\circ}}{78 y}
\end{array}
$$

- A summer solstice at -157 June 269 pm (AMT) associated with Hipparchus
- Mean motions from '...the table of the Syntaxis...' with slightly adjusted year lengths: $102 \rightarrow 1022 / 3$ and $309 \rightarrow 3071 / 6$
- an epoch at $-37,244$ Thoth 1 era Philip (-323 Nov 12), and a secondary epoch 37,500 ey later $\left(-158\right.$ Oct 2) $\left[37500=2^{2} \cdot 3 \cdot 5^{5}=60 \cdot 625\right]$

Reconstruction of P Fouad 267 A

$$
\begin{aligned}
& L_{s}=228 ; 30^{\circ} \\
& a=L_{s}-A_{s}=154 ; 34,43^{\circ} \\
& \mathrm{e}=2 ; 30 \\
& \mathrm{~g}=-1 ; 3,53^{\circ} \\
& \lambda_{t}=224 ; 21^{\circ} \\
& \mathrm{L}_{t}=\lambda_{t}-g=225 ; 24,53^{\circ}
\end{aligned}
$$

Neugebauer, $H A M A$, p297-8: $126007^{d} 1^{h}=345^{r}-7 \frac{1}{2}^{\circ}$

Thus one finds by simple division

$$
1 \text { sid. rot. }=365 ; 15,35,29,28, \ldots{ }^{\mathrm{d}} \approx 3651 / 41 / 100
$$

$$
\text { (3) } \quad Y_{s}=365^{d}+\frac{1}{4}+\frac{1}{102}
$$

for the length of the sidereal year.
The corresponding difference between sidereal and tropical year is therefore

$$
\Delta t=365 ; 15,35,29-365 ; 14,48=0 ; 0,47,29^{d}
$$

requiring a solar motion of

$$
0 ; 0,47,29 \cdot 0 ; 59,8=0 ; 0,46,47,51^{\circ} .
$$

Hence (2) implies
precession per year: $\mathbf{0 ; 0 , 4 6 , 4 8 ^ { \circ }}$ or 1° precession in 77 Eg. \mathbf{y}.
(4)

It seems hardly possible to assume that Hipparchus in his investigations of the

$$
\pi_{t}=\frac{8^{\circ}}{625 e y} \simeq \frac{1^{\circ}}{78 y}
$$

differences between sidereal and tropical years could have overlooked such a direct consequence of some of his basic parameters. Hence one must conclude

Hipparchus accurate
-161/9/27 $6 \mathrm{pm} \quad(9 / 272 \mathrm{am})$
-158/9/27 6 am (9/26 8 pm)
$-157 / 6 / 269 \mathrm{pm} \quad(6 / 266 \mathrm{pm})$ the only Hipparchan solstice or equinox not at 6^{h} or 12^{h}
-157/9/27 noon (9/27 2 am)
-146/9/27 midnight (9/26 6 pm)
etc....down to
$-127 / 3 / 236 \mathrm{pm}(20 \mathrm{in}$ all $)$

Antikythera Mechanism

(discovered in a ~ 100 BC shipwreck in 1901)

Price (1970s)
Bromley(1990s)
Wright(1990s-present)

Nature (2006)
Freeth et al. (AMRP)

Nature (2008)
Freeth, Jones, Steele, Bitsakis

JHA (2010)
Evans, Carman, Thorndike

Many working models, Youtube videos, etc.

Radiographs of 7 major fragments

Antikythera Mechanism

© Antikythera Mechanism Research Project

Antikythera gears

Solar inequality on the Antikythera Mechanism Evans, Carman, Thorndike, JHA (2010)

© National Archaeological Museum in Athens / Antikythera Mechanism Research Project

29° corresponds to $281 / 2$ days,

Photoshop composite of multiple CT scans

the implied solar anomaly

Null hypothesis (no solar anomaly), a horizontal line, is clearly ruled out

Planetary mean motions

	revs	yrs
Venus	720	1151
Mars	133	284
Saturn	256	265
Jupiter	315	344
Mercury	1223	388
	-684	-217
	$=539$	171

Keskinto Inscription

Fig. 1. The Keskintos Astronomical Inscription ($I G 12.1,913,=\mathrm{SK} 14472$)
Staatliche Museen zu Berlin, Preußischer Kulturbesitz, Antikensammlung, Photo Johannes Laurentius.
Tannery 1895
Neugebauer 1975 (HAMA 698-705)
Jones 2006

Tannery's rubbing

Alexander Jones' text.

...and translation

]... A circle comprises 360 degrees or 9720 stigmai. A degree comprises 2[7] points. also, $29160=3 \cdot 9720=81 \cdot 360=162 \cdot 180$

Sometimes, in Hindu texts, an arcminute comprises 27 yohanas.

27 'points' to a degree

Canobic Inscription:

"..at the mean distance of the Sun and Moon at syzygies, the diameter of either luminary subtends at the sight $1 / 162$ of a right angle..."
implying that each body subtends 15 'points'.

Similarly, in the Hindu text Pancasiddhantika of Varahamihira (Neugebauer and Pingree 1971), likely derived from Greek sources, divides the Moon's disk into 15 parts, and

Hipparchus, Ptolemy, and Hindu texts specify the sizes of planets and stars as fractions of the Sun's diameter.

PAITATMAHASIDDHẼNTA

III. 8. The measure of the [diameter of the] disc of the Sun is 6,500 [yojana-s]; that of the Moon 480; that of Mars 15; that of Mercury 60; that of Jupiter 120; that of Venus 240 ; and that of Saturn 30.

THE TEN GİTI STANZAS

5. A yojana consists of 8,000 times a $n r$ [the height of a man]. The diameter of the Earth is 1,050 yojanas. The diameter of the Sun is 4,410 yojanas. The diameter of the Moon is 315 yojanas. Meru is one yojana. The diameters of Venus, Jupiter, Mercury, Saturn, and Mars are one-fifth, one-tenth, one-fifteenth, onetwentieth, and one-twenty-fifth of the diameter of the Moon. The years of a yuga are equal to the number of revolutions of the Sun in a yuga.

Great Year (in Egyptian years)

$$
\begin{aligned}
29160^{e y} \cdot 365^{d / e y} & =29140^{r} \cdot\left(365+\frac{1}{4}+\frac{1}{1942^{2 / 3}}\right)^{d / r} \\
& \simeq 29140^{r} \cdot 365 \frac{1}{4}^{d / r}
\end{aligned} \sim 45 \mathrm{~s}
$$

All planets:

$$
L+A=29140^{r} \text { (solar revolutions) }
$$

Saturn $12^{\circ / \mathrm{y}}$
or 1^{r} in 30^{y}

$$
\begin{aligned}
& L=992^{r}=\frac{1}{360^{\circ / r}}\left(12^{\circ / e y}+\left(\frac{20}{81}\right)^{\circ / e y}\right) \cdot 29160^{e y}=972^{r}+20^{r} \\
& B=989 \frac{3}{5}^{r}=\frac{1}{360^{\circ} / r}\left(12^{\circ / e y}\left(1-\frac{1}{405}\right)+\left(\frac{20}{81}\right)^{\circ / e y}\right) \cdot 29160^{e y} \\
& A=28148^{r}=29140^{r}-L \quad \text { very slowly moving node } \\
& G=27176^{r}=A-\left(L-20^{r}\right) \quad
\end{aligned}
$$

The minus signs indicate a planet moving clockwise (the 'wrong' way)
Jupiter $30^{\circ / \mathrm{y}}$
or 1^{r} in 12^{y}

$$
\begin{aligned}
& L=2450^{r}=\frac{1}{360^{\circ / r}}\left(30^{\circ / e y}+\left(\frac{20}{81}\right)^{\circ / e y}\right) \cdot 29160^{e y}=2430^{r}+20^{r} \\
& B=2456^{r}=\frac{1}{360^{\circ} / r}\left(30^{\circ / e y}\left(1+\frac{1}{405}\right)+\left(\frac{20}{81}\right)^{\circ / e y}\right) \cdot 29160^{e y} \\
& A=26690^{r}=29140^{r}-L \quad \\
& G=24260^{r}=A-\left(L-20^{r}\right) \quad \text { Saturn: } 2^{\mathrm{r}} \text { in } 60^{\mathrm{y}}+\text { apogee } \sim 2^{\mathrm{r}} \text { in } 59 \mathrm{y} \\
& G \text { Jupiter: } 6^{\mathrm{r}} \text { in } 72^{\mathrm{y}}+\text { apogee } \sim 6^{\mathrm{r}} \text { in } 71^{\mathrm{y}}
\end{aligned}
$$

Apparent underlying model

Fig. 2. Possible epicyclic model for Jupiter or Saturn in the Keskintos Inscription.

$$
\begin{aligned}
& L_{\text {Saturn }}=992^{r}=\frac{1}{360^{o / r}}\left(12^{\circ / \text { ey }}+\left(\frac{20}{81}\right)^{\circ / \text { ey }}\right) \cdot 29160^{\text {ey }}=972^{r}+20^{r} \\
& L_{\text {Jupiter }}=2450^{r}=\frac{1}{360^{\sigma / r}}\left(30^{\circ / \text { ey }}+\left(\frac{20}{81}\right)^{\circ / \text { ey }}\right) \cdot 29160^{\text {ey }}=2430^{r}+20^{r}
\end{aligned}
$$

Theon of Smyrna mentions, quite routinely, a solar model with periods of $3651 / 4$ days in longitude, $3651 / 2$ days in anomaly (hence a solar apogee moving $1 / 4{ }^{\circ}$ per year), and 365 days in latitude.

Two papyrus fragments, P. Oxy LXI.4174a and PSI inv. 515, give kinematic solar motion tables that are consistent with the model parameters mentioned by Theon, and so remove all doubt that the models mentioned by Theon were actively used.

Mars $191^{0 / y}$

$$
\begin{aligned}
& L=15492^{r}=\frac{1}{360^{\circ / r}}\left(191^{\circ / e y}+\left(\frac{21}{81}\right)^{\circ / e y}\right) \cdot 29160^{e y}=15471^{r}+21^{r} \\
& B=2456^{r}=\frac{1}{360^{\circ / r}}\left(191^{\circ / e y}\left(1-\frac{28 / / 101}{405}\right)+\left(\frac{21}{81}\right)^{\circ / e y}\right) \cdot 29160^{e y} \\
& A=13648^{r}=29140^{r}-L \\
& G=40965^{r}=3 A+21^{r} \text { (probably, but the reading is uncertain) }
\end{aligned}
$$

Mars: 191° ey + apogee $\sim 42^{\text {r }}$ in 79^{y} (almost exactly)

Comparing Greek and Hindu Astronomy

There are many similarities between Greek and Hindu astronomy, but in general the level of development in the Hindu versions is lower than what we find in the Almagest:

- The equation of time.
- Obliquity of the ecliptic.
- Parallax.
- Trigonometry scales.
- Retrograde motion.
- Model of Mercury.
- Determination of orbit elements.
- Values of orbit elements.
- Star catalog.
- Zodiacal signs.
- The second lunar anomaly.

Thus the essentially universally accepted view that the astronomy we find in the Indian texts is pre-Ptolemaic. Summarizing the prevailing opinion, Neugebauer wrote in 1956:
"Ptolemy's modification of the lunar theory is of importance for the problem of transmission of Greek astronomy to India. The essentially Greek origin of the Surya-Siddhanta and related works cannot be doubted - terminology, use of units and computational methods, epicyclic models as well as local tradition - all indicate Greek origin.

But it was realized at an early date in the investigation of Hindu astronomy that the Indian theories show no influence of the Ptolemaic refinements of the lunar theory [$2^{\text {nd }}$ lunar anomaly].

This is confirmed by the planetary theory, which also lacks a characteristic Ptolemaic construction, namely, the "punctum aequans [equant]".

So if we are interested in what happened in Greek astronomy during $130 \mathrm{BC}-120 \mathrm{AD}$, Hindu texts may be a good place to look.
Let's look at some examples.

Greek-Hindu Trigonometry

Neugebauer (PAPS 1972)

ĀRYABHATITYA

10. The (twenty-four) sines reckoned in minutes of arc are $225,224,222,219,215,210,205,199,191,183,174,164,154$, $143,131,119,106,93,79,65,51,37,22,7$.

In Indian mathematics the "half-chord" takes the place of our "sine." The sines are given in minutes (of which the radius contains 3,438) at intervals of 225 minutes. The numbers given here are in reality not the values of the sines themselves but the differences between the sines.

Table of chords

Angle(degrees)	Chord
0	0
$71 / 2$	450
15	897
$221 / 2$	1341
30	1780
$371 / 2$	2210
45	2631
$521 / 2$	3041
60	3438
$671 / 2$	3820
75	4186
$821 / 2$	4533
90	4862
$971 / 2$	5169
105	5455
$1121 / 2$	5717
120	5954
$1271 / 2$	6166
135	6352
$1421 / 2$	6511
150	6641
$1571 / 2$	6743
165	6817
$1721 / 2$	6861
180	6875

Toomer (Centaurus, 1973)

from Almagest 4.11 and Hipparchus

$$
R / e=3144 / 327^{2} / 3 \quad R / r=3122^{1} / 2 / 247^{1 / 2}
$$

$$
(\rightarrow 2924 \text { / } 232 \text {) }
$$

$$
\begin{align*}
& \begin{aligned}
& \mathrm{M}_{1} \mathrm{P}= \mathrm{M}_{1} \mathrm{~B}-\frac{\mathrm{M}_{3} \mathrm{~B} \mathrm{Crd} 2\left(\frac{180^{\circ}-\alpha_{3}}{2}\right)}{2 \mathrm{R}^{\prime}}=\mathrm{M}_{1} \mathrm{~B}-\frac{\mathrm{M}_{3} \mathrm{BCrd} 128 ; 27^{\circ}}{2 \mathrm{R}^{\prime}} \\
&=\mathrm{s}\left(\frac{1000}{6669 \frac{1}{3}}-\frac{1112 \frac{1}{2} \cdot 6189 \frac{1}{2}}{6750 \frac{1}{2} \cdot 2 \cdot 3438}\right)=\mathrm{s}\left(\frac{515 \frac{1}{2}-510 \frac{1}{3}}{3438}\right)=\mathrm{s} \cdot \frac{5 \frac{1}{3}}{3438} .
\end{aligned} \\
& \begin{aligned}
& \mathrm{M}_{1} \mathrm{M}_{3}=\sqrt{\mathrm{M}_{3} \mathrm{P}^{2}+\mathrm{M}_{3} \mathrm{P}^{2}}=\mathrm{s} \cdot \frac{246 \frac{1}{3}}{3438^{\circ}} . \\
& \mathrm{r}=\frac{\mathrm{M}_{1} \mathrm{M}_{3} \cdot \mathrm{R}^{\prime}}{\mathrm{Crd}_{3}}=\mathrm{s} \cdot \frac{246 \frac{1}{3}}{3438} \cdot \frac{3438}{2989}=\mathrm{s} \cdot \frac{246 \frac{1}{3}}{2989^{\circ}} \quad=3162 \quad \mathrm{x} \quad 231 \mathrm{3} / 4
\end{aligned} \\
& \mathrm{Crd} \widehat{\mathrm{M}_{3} \mathrm{CB}}=\frac{\mathrm{M}_{3} \mathrm{~B} \cdot \mathrm{R}^{\prime}}{\mathrm{s}}=\frac{\mathrm{s} \cdot 1112 \frac{1}{2} \cdot 2989 \cdot 3438}{\mathrm{~s} \cdot 67501 \cdot 2461}=6875 . \quad 2960 \quad 2 / 5 \tag{1}
\end{align*}
$$

$$
\pi \simeq \sqrt{10} \simeq 3.1622 \ldots
$$

This suggests that Hipparchus was using a circle of circumference 20,000 (i.e. two Greek myriads), and hence a radius of

$$
s=\frac{20,000}{2 \pi}=\frac{10,000}{\sqrt{10}}=1,000 \sqrt{10} \simeq 3162
$$

of heaven by [the number of] its revolutions [in a Kalpa]; that [planet] which makes many revolutions has an inferior orbit, that which makes few a superior orbit. The diameter of the orbit equals the circumference divided by the square-root of 10 ; the planet is situated above the earth by [half] the height of this. The circumference equals the diameter multiplied by the square-root of 10 . Thus are computed the circumferences and diameters of all circles.

$$
\begin{aligned}
37,500 & =2^{2} 35^{5} \\
29,160 & =2^{3} 3^{6} 5 \\
4,320,000 & =2^{8} 3^{3} 5^{4}
\end{aligned}
$$

$L_{p}=0^{\circ}$ (for all planets)
Similar Great-Year structure to P Fouad 267A and the Keskinto Inscription

Cycles of Time: An Extraordinary New View of the Universe Roger Penrose Bodley Head: 2010. 320 pp.
"It is possible that our early universe is the late universe of a previous era. This is Penrose's big idea: deliciously absurd, but just possibly true."
....the essentially Greek origin of the SuryaSiddhanta and related works cannot be doubted - terminology, use of units and computational methods, epicyclic models as well as local tradition - all indicate Greek origin (Neugebauer, 1956).

Hindu Mean Motions
-3101/2/18 6 am 499/3/21 noon
$\mathrm{t}_{1} \quad \Delta t_{12}=3,600 y \quad \mathrm{t}_{2} \quad \mathrm{t}_{0}+4,320,000 \mathrm{y}$
$L_{p}=0^{\circ}$
$L_{p}=0^{\circ}$
e.g. for Jupiter: $\quad \omega=\frac{364,224^{r}}{4,320,000^{y}}$
$=0 ; 5,3,31,12^{r / y}$

$$
\frac{R_{L}}{Y}=\frac{83-76}{83}=0 ; 5,3,36,52 \ldots
$$

$$
L_{J u p}=187 ; 12^{\circ}
$$

$$
=187 ; 12^{\circ} \cdot \frac{1^{r}}{360^{\circ}}
$$

There is a constraint:
L must be a multiple of $1 ; 12^{\circ}$
$=0 ; 31,12^{r}$

Greek-Hindu Planetary Models

eccentric plus epicycle model

equant plus epicycle model

$$
\tan p(\alpha, \gamma)=\frac{-r \sin \gamma}{\rho(\alpha)+r \cos \gamma}
$$

The final longitude is a function of two variables, so the computation is probably too complicated for the primary customers (astrologers) and a simplification that uses only single variable functions is needed. We know of two schemes.

1. The Almagest Solution:

A sophisticated interpolation scheme

$$
\begin{aligned}
& f(x, y)=f_{1}(x)+\frac{H(y)-H(c)}{H(d)-H(c)} \cdot\left[f_{2}(x)-f_{1}(x)\right] \\
& H(y)=f_{\max }(y)=\max \{f(x, y): x \in[a, b]\}
\end{aligned}
$$

2. The Hindu Solution: factorization by iteration

eccentric orbits (manda) for the zodiacal anomaly

$$
\sin q(\alpha)=-e \sin \alpha
$$

epicycles (sighra) for the solar anomaly

$$
\tan p(\gamma)=\frac{r \sin \gamma}{1+r \cos \gamma} \neq \frac{r \sin \gamma}{\rho+r \cos \gamma}
$$

(1) $\alpha=\bar{\lambda}-\lambda_{A} \quad v_{1}=\bar{\lambda}+1 / 2 q(\alpha)$
(2) $\gamma=\bar{\lambda}_{s}-v_{1} \quad v_{2}=v_{1}+1 / 2 p(\gamma)$
(3)
(4) $\quad \gamma=\bar{\lambda}_{s}-v_{3} \quad \lambda=v_{3}+p(\gamma)$
...but what is the Hindu solution an approximation to?

	$q(\alpha)$Mars equation of center				$p(\gamma)$	
equation of anomaly						

we can see by using identical orbit elements in both models Below is plotted the discrepancy between modern theory and three ancient models.

The Hindu scheme is clearly approximating the equant, not the eccentric.
The approximation is excellent for Jupiter (and Saturn), and pretty good for Mars, but definitely not as good as the Almagest interpolation scheme.

Greek-Hindu Lunar Models

Almagest:
At syzygy, $r=5 ; 15$, epicycle; otherwise, a crank mechanism and adjusted epicycle apogee

Greek-Hindu Lunar Models

Hindu models:

At syzygy, $r=5 ; 15$, concentric equant; Otherwise

$$
\begin{aligned}
q & =\lambda-L \\
& =-5 ; 01^{\circ} \sin \alpha-2 ; 29^{\circ} \cos \psi \sin \eta
\end{aligned} \begin{aligned}
& \begin{array}{l}
\text { Aryabhata et al. } \\
(\text { ca. } 500 \mathrm{AD})
\end{array} \\
& \begin{array}{l}
\text { Munjala, Vatesvara(?) } \\
(\text { ca. } 902-930 \mathrm{AD})
\end{array}
\end{aligned}
$$

Modern lunar theory

$$
\begin{aligned}
& \alpha=L-A=\text { mean lunar anomaly } \\
& \eta=L-L_{S}=\text { mean lunar elongation from Sun } \\
& \psi=L_{S}-A \\
& \alpha=\eta+\psi
\end{aligned}
$$

The first two terms in modern theory:

$$
\begin{aligned}
q(\alpha, \eta) & =-2 e \sin \alpha-\varepsilon \sin (2 \eta-\alpha)+O\left(e^{2}, \varepsilon^{2}\right) \\
& =-2 e \sin \alpha+\varepsilon \sin \alpha-2 \varepsilon \cos \psi \sin \eta \\
& =-(2 e-\varepsilon) \sin \alpha-2 \varepsilon \cos \psi \sin \eta \\
& =-r \sin \alpha-r^{\prime} \cos \psi \sin \eta \\
& =-5 ; 01^{\circ} \sin \alpha-2 ; 33^{\circ} \cos \psi \sin \eta \\
& \quad \text { (Munjala gives } 2 ; 29^{\circ} \text {) }
\end{aligned}
$$

so how do you get $-5 ; 01^{\circ} \sin \alpha-2 ; 29^{\circ} \cos \psi \sin \eta \quad$ from geometry?

In fact, there are two ways to modify the concentric equant, and they are equivalent:

2ψ period 7 months

2η period 15 days

Munjala, and later Kepler, Horrocks, and probably Newton used the 2ψ version, while Ibn ash-Shatir, and later Copernicus and Lansbergen used the 2η version (everyone after Munjala using an eccentric version).

Thus the essentially universally accepted view that the astronomy we find in the Indian texts is pre-Ptolemaic. Summarizing the prevailing opinion, Neugebauer wrote in 1956:
"Ptolemy's modification of the lunar theory is of importance for the problem of transmission of Greek astronomy to India. The essentially Greek origin of the Surya-Siddhanta and related works cannot be doubted - terminology, use of units and computational methods, epicyclic models as well as local tradition - all indicate Greek origin.

But it was realized at an early date in the investigation of Hindu astronomy that the Indian theories show no influence of the Ptolemaic refinements of the lunar theory [$2^{\text {nd }}$ lunar anomaly].

This is confirmed by the planetary theory, which also lacks a characteristic Ptolemaic construction, namely, the "punctum aequans [equant] ".

So things might be a little more involved that once thought...

The safest general characterization of the European philosophicat history of ancient mathematical astronomy tradition is that it consists of a series of footnotes to Plate Neugebauer. I do not mean the systematic scheme of thought which scholars have doubtfully extracted from his writings. I allude to the wealth of general ideas scattered through them. His personal endowments, his wide opportunities for experience at a great period of civilization, his inheritance of an intellectual tradition not yet stiffened by excessive systemization, have made his writings an inexhaustible mine of suggestion.

Alfred North Whitehead, Process and Reality (1929), p. 39

Stories from the Lost Years

P. Fouad 267A

Antikythera Mechanism
Keskinto Inscription
India: trigonometry, planets, moon

Directly or indirectly, Neugebauer had a role in all of these, often fundamental.

