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The early history of trigonometry, say for the time from Hipparchus through Ptolemy, is 
fairly well established, at least in broad outline (van Brummelen 2009). For these early 
astronomers plane trigonometry allowed the solution of an arbitrary right triangle, so that 
given either of the non-90° angles one could find the ratio of any two sides, or given a 
ratio of sides one could find all the angles. In addition the equivalent of  the law of sines 
was known, although use infrequently, at least by Ptolemy. This skill was fully developed 
by the time Ptolemy wrote the Almagest, ca 150 CE (Toomer 1980), and he used it to 
solve a multitude of problems, some of them quite sophisticated, related to geometric 
models of astronomy. Ptolemy’s sole tool for solving trigonometry problems was the 
chord: the length of the line that subtends an arc of arbitrary angle as seen from the center 
of a circle. Using a standard circle of radius 60, the Almagest gives a table of these chords 
for all angles between ½° and 180° in increments of ½°, and indeed Ptolemy gives a 
fairly detailed account of how one can compute such a table using the geometry theorems 
known in his time. Curiously, but not all that unusual for Ptolemy, it appears that some of 
the chord values in the Almagest were not in fact derived using the most powerful 
theorems that Ptolemy possessed  (van Brummelen 1993, 46-73). 
 
We also have evidence from Ptolemy that Hipparchus, working around 130 BCE, was 
able to solve similar trigonometry problems of about the same level of difficulty. For 
example, regarding finding the eccentricity and direction of apogee for the Sun’s simple 
eccentric model, Ptolemy writes , Ptolemy writes in Almagest III 4: 
 

These problems have been solved by Hipparchus with great care. He assumes that the 
interval from spring equinox to summer solstice is 92½ days, and that the interval 
from summer solstice to autumn equinox is 92½ days, and then, with these 
observations as his sole data, shows that the line segment between the above-
mentioned centres is approximately 1

24
th of the radius of the eccentre, and that the 

apogee is approximately 24½° in advance of the summer solstice. 
 
The similar problem of finding the eccentricity and direction of apogee for the Moon’s 
simple epicycle model is complicated by the moving lunar apogee. A glance at Figure 1 
and a few moments consideration might give you some feel for the more advanced 
difficulty level of this particular problem. that Ptolemy explains in Almagest IV 6: 
 

In this first part of our demonstrations we shall use the methods of establishing the 
theorem which Hipparchus, as we see, used before us. We, too, using three lunar 
eclipses, shall derive the maximum difference from the mean motion and the epoch of 
the [moon’s position] at the apogee, on the assumption that only this [first] anomaly 
is taken into account, and that it is produced by the epicyclic hypothesis. 
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Figure 1.  Consider a circle with center C and radius r. Let the distance OC = R. The 
angles M1CM2, M2CM3 and M1OM2, M2OM3 are given, and the problem is to find r/R. 
For a solution see Almagest IV 6 or Toomer 1973. 

 
 
Finally, in Almagest IV 11 Ptolemy presents two trios of lunar eclipses that he says 
Hipparchus had used to determine the size of the first anomaly in lunar motion. Ptolemy 
gives just the results of Hipparchus’ solutions, and from these we learn that while 
Hipparchus was certainly a capable user of trigonometry, he used a different set of 
numerical conventions than those used by Ptolemy. For example, while Ptolemy used a 
standard 360° degree circle with a radius of 60 parts, Hipparchus apparently specified the 
circumference of his circle as having 21,600 ( = 360 x 60) parts, so that his diameter was 
about 6875 parts and his radius was about 3438 parts (Toomer 1973). We cannot, 
however, be sure whether Hipparchus used the same chord construct as Ptolemy, or 
perhaps just gave the ratio of side lengths corresponding to a set of angles. Nor can we be 
sure whether Hipparchus used a systematized table, or if he did, the angle increments of 
that table (Duke 2005).  
 
One attempt to resolve these questions comes not from Greek or Roman sources, but 
from texts from ancient India that date from perhaps 400 – 600 CE. For many reasons, 
including the use of the circumference convention identical to that used by Hipparchus, 
and in spite of their appearance in India some six centuries after Hipparchus, it is has 
been proposed that these texts reflect a Greco-Roman tradition that is pre-Ptolemaic and 
largely otherwise unknown to us  (Neugebauer 1956, Pingree 1976,1978, van der 
Waerden 1961). These proposals have so far eluded definitive confirmation (and neither 
have any effective refutations appeared), but if they are true for the parts involving 
trigonometry, then it would seem plausible that Hipparchus’ working set of tools 
included tables with 23 (non-trivial) entries of side ratios in angular increments of 3¾°, 
corresponding to chords in increments of 7½°, for we find exactly such tables in many 
Indian texts, always embedded in astronomical material that is extremely similar to early 
Greek astronomy. 
 
We might be able to understand Hipparchus’ use of trigonometry somewhat better if we 
had a little more idea how it was developed. There is a Greek source that might well be 
helpful in this regard, namely Archimedes’ Measurement of a Circle (Heath 1897). 
Archimedes’ mathematical methods in this paper are well-known: he uses the bounds  
 
                                                           265 1351

153 7803< <  



 
on  3  and then alternately circumscribes and inscribes a set of regular polygons around 
a circle, ultimately computing the ratio of the circumference of 96-sided polygons inside 
and outside the circle to the diameter of the circle, thus establishing bounds on π as 
 
                                                            10 1

71 73 3π< <  
 
What Archimedes actually computes in both cases (circumscribing and inscribing), 
however, are the ratios of the lengths of sides for a series of right triangles with smallest 
interior angle 30°, 15°, 7½°, 3¾°, (and partially 7

81 ), and so except for normalization 
many of the entries for the tables used in India and perhaps also by Hipparchus are 
computed in Archimedes’ text, and all the entries are easily found using Archimedes’ 
method.  
 
Thus, denoting the opposite side, the adjacent side, and the hypotenuse by a, b, and c 
Archimedes finds for the circumscribed sequence of right triangles ratios of the following 
values: 
 

 a b c 
30° 153 265 306 
15° 153 571 591 1/8 
7½°  153 1162 1/8 1172 1/8 
3¾° 153 2334 3/8 2339 3/8 

 
 
The entries in the first row result from Archimedes’ lower bound on 3 , while the 
entries in row i+1 follow from those in row i using Archimedes’ algorithm: 
 

 
1

1

2 2
1 1

i i

i i i

i i

a a
b b c

c a b

+

+

1i+ + +

=
= +

= +

 

 
The ratios for the complementary angles 60°, 75°, 82½°, and 86¼° are trivially obtained 
by interchanging columns a and b, and we now have the ratios for eight of the 23 non-
trivial angles in the sequence. We may get an additional eight values by applying 
Archimedes’ algorithm to the angles 82 ½ °, yielding the table entries for 41¼° and 
48¾°, to the angle 75°, yielding the entries for 37½°, 52½°, 18¾°, and 71¼°, and to the 
angle 52½ °, yielding the entries for 26¼° and 63¾°. Thus we get: 
 
 
 
 
 



 a b c 
41¼° 1162 1/8 1324 7/8 1762 3/8 
37½° 571 744 937 7/8 
18¾° 571 1682 1776 1/4 
26¼° 744 1508 7/8 1682 3/8 

 
and the ratios for the complementary angles again come from interchanging a and b. 
 
Thus 16 of the 23 table entries are immediately available directly from Archimedes’ text. 
To get the remaining seven entries it is necessary to repeat Archimedes’ analysis 
beginning from a 45° right triangle and bounds on 2 . If Archimedes used the bounds 
 
                                                             1393 577

985 4082< <  
 
then one would find for the sequence of circumscribed triangles ratios of the following 
values: 
 
 

 a b c 
45° 985 985 1393 
22½°  985 2378 2573 7/8
11¼° 985 4951 7/8 5049 
33¾° 2378 3558 6/8 4280 1/8

 
 
and the ratios for the complimentary angles 67½°, 78¾°, 56¼° again follow from 
interchanging a and b. 
 
The analysis of the inscribed triangles follows the same algorithm but instead begins with 
the upper bounds on 3  and 2 . The resulting bounds on the ratios are so close that for 
all practical purposes – let us remember, these are used for analysis of measured 
astronomical angles, and we use linear interpolation for untabulated angles – we can use 
either set, or their average, with no appreciable difference in results. Here is the entire set 
of entries: 
 
 
 
 
 
 
 
 
 
 



 circumscribed inscribed circumscribed inscribed 
Angle a c a c Base 3438 Base 3438 
3 6/8 153     2339 3/8 780       11926      225  225 
7 4/8 153     1172 1/8 780     5975 7/8  449  449 

11 2/8 985     5049 408     2091 3/8  671  671 
  15     153     591 1/8 780     3013 6/8  890  890 

18 6/8 571     1776 2/8     2911     9056 1/8 1105 1105 
22 4/8 985     2573 7/8 408     1066 1/8 1316 1316 
26 2/8 744     1682 3/8 3793 6/8 8577 3/8 1520 1520 

  30     153     306     780         1560     1719 1719 
33 6/8 2378     4280 1/8 985         1773  1910 1910 
37 4/8 571     937 7/8     2911     4781 7/8 2093 2093 
41 2/8 1162 1/8 1762 3/8 5924 6/8 8985 6/8 2267 2267 

  45     985     1393    408     577     2431 2431 
48 6/8 1324 7/8 1762 3/8 6755 7/8 8985 6/8 2584 2584 
52 4/8 744     937 7/8 3793 6/8 4781 7/8 2727 2727 
56 2/8 3558 6/8 4280 1/8 1474 1/8    1773 2858 2858 

  60     265     306          1351         1560     2977 2977 
63 6/8 1508 7/8 1682 3/8 7692 7/8 8577 3/8 3083 3083 
67 4/8 2378     2573 7/8 985     1066 1/8 3176 3176 
71 2/8     1682     1776 1/8 8575 4/8 9056 1/8 3255 3255 

  75     571     591 1/8     2911     3013 6/8 3320 3320 
78 6/8 4951 7/8 5049 2051 1/8 2091 3/8 3371 3371 
82 4/8 1162 1/8 1172 1/8 5924 6/8 5975 7/8 3408 3408 
86 2/8 2334 3/8 2339 3/8 11900 4/8   11926     3430 3430 

 
In the table above, for each angle in col. 1 cols. 2–3 and cols. 4–5 give the lengths of the 
opposite side and the hypotenuse for the circumscribed and inscribed triangles, 
respectively, in Archimedes’ method. Cols. 6 and 7 give the rounded length of the 
opposite side assuming the hypotenuse has length 3438 parts, corresponding to a 
circumference of 21,600 parts. Note that for all 23 angles the ratios for each angle are 
identical to the level of approximation used.  
 
Therefore, we see that using Archimedes’ method, and in many cases the very numbers 
that appear in his text, anyone could have assembled the table in increments of 3¾° that 
was used in India and might have been used by Hipparchus. The two steps needed to go 
beyond Archimedes are (a) a normalization convention, and (b) an interpolation scheme, 
and there seems no reason to doubt that any competent mathematician of the time would 
have the slightest trouble dealing with either issue. We are certainly in no position to say 
that Archimedes himself constructed the table, or who in the century between 
Archimedes and Hipparchus did it, but it is clear that by the time of Archimedes’ paper 
all the needed tools and results were in place, except possibly for the motivation to 
actually organize the table. 
 



We can, in fact, go even farther back into the very early history of trigonometry by 
considering Aristarchus’ On Sizes and Distances (Heath 1913), and we shall see that a 
plausible case can be made that his paper could easily have been the inspiration for 
Archimedes’ paper. The problem Aristarchus posed was to find the ratio of the distance 
of the Earth to the Moon to the distance of the Earth to the Sun. He solved this problem 
by assuming that when that the Moon is at quadrature, meaning it appears half-
illuminated from Earth and so the angle Sun-Moon-Earth is 90°, the Sun-Moon 
elongation is 87°, and so the Earth-Moon elongation as seen from the Sun would be 3°. 
Thus his problem is solved if he can estimate the ratio of opposite side to hypotenuse for 
a right triangle with an angle of 3°, or simply what we call sin 3°. In addition, for other 
problems in the same paper Aristarchus also needed to estimate sin 1° and cos 1°. 
 
Aristarchus proceeded to solve this problem is a way that is very similar to, but not as 
systematic as, the method used by Archimedes. By considering circumscribed (Fig. 2) 
and inscribed triangles (Fig 3) and assuming a bound on 2 Aristarchus effectively 
establishes bounds on sin 3° as 
 
                                                                1 1

20 18sin 3< <  
 
and, although he does not mention it, this also establishes bounds on π as 
 
                                                                 1

33 3π< <  
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Figure 2. BE is a diameter of the circle, angle EBF is 45°, angle EBG is 22½°, and angle 

EBH is 3° (not to scale). Since EBG/EBH = 15/2 then GE/EH > 15/2. Since FG/GE 
= 2 > 7/5 then FE/EG > 12/5 = 36/15 and so FE/EH > (36/15)(15/2) = 18/1. 
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Figure 3. BD is a diameter of the circle, angle BDL = 30°, and angle BDK = 3° (not to 
scale). Since arc BL = 60° and arc BK = 6° then BL/BK < 10/1. Since  BD = 2 BL then 
BD/BK < 20/1. 
 
 
Later, in Propositions 11 and 12 Aristarchus proves using similar methods that 
 
                                                        1 1

60 45sin1< <  
and 
                                                  89

90 cos1 1< <  
 
always understanding, of course, that what we write as sine and cosine was to Aristarchus 
a ratio of sides in a right triangle. None of these bounds are particularly tight, and it is 
difficult to know if this was the best Aristarchus could do, or whether it was simply 
adequate for his purposes, which is apparently the case in any event. 
 
The similarities between Aristarchus’ and Archimedes’ methods are clear: both assume 
bounds on a small irrational number, and hence effectively on the value of sin α for some 
relatively large angle, 60° or 45°, and through a sequence of circumscribed and inscribed 
triangles on a circle establish bounds on a target small angle, 3° for Aristarchus and 7

81  
for Archimedes. Archimedes clearly realizes that this established bounds on π; 
Aristarchus may or may not have realized it, or might have not considered his bounds 
interesting enough to mention. Both Aristarchus and Archimedes are focused firmly on 
the relations between angles and ratios of sides in right triangles, neither ever using 
anything related to the chord construct used by Ptolemy. We know that Archimedes and 
Aristarchus exchanged correspondence, and we know that Archimedes was well aware of 
Aristarchus’ work on the Earth–Moon–Sun distance problem. Indeed, Archimedes tells 
us that his own father also worked on the problem. In any case the parallels in the two 
calculations are quite striking, and it is not hard to imagine that Aristarchus’ calculation 
could have been the inspiration behind Archimedes’ calculation. 
 
 



Coupled with the fact that the sin and not the chord is used also in the Indian texts, this 
suggests that the chord was introduced later rather than sooner, and certainly offers no 
encouragement to anyone claiming that Hipparchus used chords or that the sine was 
invented in India as an ‘improvement’ over the chord. 
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