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     Models of planetary motion as observed from Earth must account for two principal 
anomalies: (1) the nonuniform speed of the planet as it circles the zodiac, and (2) the 
correlation of the planet’s position with the position of the Sun. In the context of the 
geometrical models used by the Greeks, the practical difficulty is to somehow isolate the 
motion of the epicycle center on the deferent, which is responsible for the first anomaly, 
from the motion of the planet on its epicycle, which is responsible for the second 
anomaly. This then allows determination of, first, the eccentricity e and longitude A of 
the apogee of the deferent and the positions 0λ of the epicycle center and 0α of the planet 
on the epicycle at some time t0, and second, the radius r of the epicycle. 
 
     One way to isolate the motion of the epicycle center for the outer planets is to 
determine the longitude and time of oppositions of the planet with the mean Sun. At the 
moment of such an opposition the radius of the epicycle is pointing directly at the Earth 
and so the size of the epicycle has no impact. Even so, the determination of the longitude 
and time of opposition is not easy. It requires both a sequence of timed longitude 
measurements of the planet both before and after opposition, while the planet’s motion is 
retrograde, and an adequately calibrated solar theory to get the corresponding longitudes 
of the mean sun. The actual longitude and time of opposition is then a result of some sort 
of data reduction scheme. Using just three such oppositions and an elegant iterative 
geometrical analysis, Ptolemy shows in Almagest X–XI how to determine e, A, 0λ , and 

0α .1 It turns out, however, that the parameter values determined using this method are 
extremely sensitive to small variations in the input data. It seems likely, in fact, that the 
values of the final model parameters found in the Almagest are the culmination of a chain 
of developments using simpler methods that may well have extended over several 
decades, if not centuries.2 With these simpler methods one can use several more 
oppositions, perhaps a dozen or more, to determine the parameters and to a large extent 
avoid the extreme sensitivity that afflicts the Almagest method.3 Either way, once the 
values of e, A, 0λ , and 0α  are determined, a simple analysis of a single observation of t
planet away from opposition yields a value for the epicycle radius r. Implicit in both 
analyses is a rough knowledge of the mean motions on the deferent and the epicycle, but 
these are easily determined using well-known period relations.  

he 

 
     Given the extensive observational program required to determine the oppositions of 
each outer planet with the mean Sun, it would certainly not be surprising to suppose that 
if a shortcut was available for getting the empirical information necessary for determining 
the model parameters, some Greek astronomer(s) would use it, either for some sort of 
preliminary or exploratory analysis, or to confirm a conventional analysis of the type 
outlined above, or perhaps even in lieu of real observations. Thus, a Greek astronomer 
might have realized that, to the extent that they agree with observation, the predictions of 
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mean oppositions by Babylonian models could serve as useful proxies for real empirical 
observations. 
 
     In addition, however, a Greek astronomer might also have realized how to extract 
from System A models for the outer planets the very nonuniform time variation of model 
angles that his kinematical models are designed to produce, namely the equation of center 
q λ λ= − , which is the difference between the true and mean longitude of the epicycle 
center. In particular, in the geometrical models, at least as formulated in the Almagest, the 
time t is the independent variable and the equation of center is given as a function of the 
eccentricity e and the angle 
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In the above equations the normalization is such that the total eccentricity of the eccentric 
model is the same as the earth–equant distance in the equant model, namely 2e. 
 
     In System A models the true longitude λ is the independent variable and the time and 
mean longitude are functions of λ, so it is convenient to invert the above relations and 
give q as a function of the angle Aγ λ= − . Thus for the eccentric we have 
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These expressions for the equation of center are qualitatively similar to each other but 
differ in some details. For both models q = 0 at apogee and perigee, which are in each 
model 180° apart, and the extreme values of q are symmetric about the λ–axis, with 
values  for the eccentric and  for the equant, the latter being 
smaller than the former (see Figure 1). The models differ, however, in that while for the 
eccentric the extreme values are 180° apart, for the equant the distance from maximum to 
minimum, and hence crossing apogee, is smaller than the distance from minimum to 
maximum, crossing perigee. Consequently, for the eccentric we have 

1sin (2 / )e R−± 12 tan ( / )e R−±
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so that the derivative of q for the equant is larger in absolute magnitude at apogee than at 
perigee. We will see later that this property of the equant is reflected in most System A 
models for the outer planets, although whether anyone realized that is at present unclear.  
 
*********Fig 1 goes here******** 
 
     In any event, however, note that knowledge of where q = 0 when its extrema are 
equidistant from the λ–axis gives the apogee and perigee of the deferent, and both the 
values of dq/dλ at q = 0 and the extreme values of q give estimates for e/R. Our task now 
is to see how a Greek astronomer could with relative ease determine the effective 
equation of center q(λ) implied by a System A model, and hence estimate e and A by 
comparing the functions given above with his System A estimates. 
Thus the plan of this paper is to  

(a) assume that some Greek astronomers were trying to explain the zodiacal anomaly 
using geometrical models in a way that isolates the zodiacal anomaly from the 
effects of the solar anomaly 

(b) assume that the Greek astronomers understood enough about how System A 
planetary models work to realize that they might be useful for such an explanation 

(c) discuss whether it is even possible to use System A models to estimate the 
parameters of Greek geometrical models using methods that are plausible for 
Greek mathematicians. 

 
     Regarding assumption (a), Ptolemy, speaking of Hipparchus, writes (from Toomer, 
ref. 1): 
 

“For, we may presume, he [Hipparchus] thought that one must not only show that each 
planet has a twofold anomaly, or that each planet has retrograde arcs which are not 
constant, and are of such and such sizes (whereas the other astronomers had constructed 
there geometrical proofs on the basis of a single unvarying anomaly and retrograde arc); 
nor that these anomalies can in fact be represented either by means of eccentric circles 
or by circles eccentric with the ecliptic, and carrying epicycles, or even combining both, 
the ecliptic anomaly being of such and such size, and the synodic anomaly of such and 
such (for these representations have been employed by almost all of those who have 
tried to exhibit the uniform circular motion by means of the so-called ‘Aeon-tables’, but 
their attempts were faulty and at the same time lacked proofs: some of them did not 
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achieve their object at all, the others only to a limited extent); but, he reckoned that one 
who has reached such a pitch of accuracy and love of truth throughout the mathematical 
sciences will not be content to stop at the above point, like the others who did not 
care…” (italics added). 

 
So although Ptolemy does not directly say that Hipparchus left the information above in 
his writings, he is at least willing to ‘presume’ what Hipparchus was thinking – that it 
was important to explain both anomalies with geometrical models, and that will many 
people had tried, none had yet succeeded. If Ptolemy was willing to presume that, then I 
suggest we should also be willing. This conclusion is further supported by the Hindu 
planetary models, which are generally considered to be pre-Ptolemaic and which 
definitely are geometrical attempts to explain both anomalies,4 and which may in fact be 
among those Ptolemy, and as he presumed, Hipparchus, were alluding to above. 
 
     Assumption (b) is supported by the fact that Greek papyri give System A planetary 
model results using parameters adopted by Greek astronomers.5 Such adaptations show 
clearly that at least some Greek astronomers were capable of understanding the structure 
of System A models well enough to modify them and bring them into conformance with 
Greek astronomy and Greek calendars. 
 
     As will be explained in detail in the following, given assumptions (a) and (b) the 
question posed in point (c) can be answered in the affirmative. In particular, however, 
while there is very tentative evidence discussed below from a papyrus that might be 
associated with Mars that someone might have gone down the path we discuss, that 
evidence is far from conclusive and might even be an illusion. Nevertheless, that does not 
affect the main result of this paper – that the proposed scenario might have plausibly 
happened. However unsatisfactory all of the uncertainty may seem, it is really no 
different than the same uncertainty we face in many other places in the history of ancient 
mathematical astronomy. We can see that some development was possible, and we can 
see that if some development happened then it would explain something we do reliably 
see, but we simply have no direct evidence to support the original premise that the said 
development did occur. 
 
     Unlike the Greek geometrical models, which are kinematical and based on explicitly 
continuous motion in space and time, the Babylonian models are based entirely on simple 
arithmetic and aim to explain only the location in space and time of a sequence of 
synodic events, which are appearances of a planet in a given relationship to a uniformly 
moving Sun, which a Greek astronomer would identify as the mean Sun. In order to 
clearly understand the underlying phenomena, let us begin by considering conjunctions of 
an outer planet, say Jupiter, with the Sun, and for now ignore the fact that such 
conjunctions are not in fact visible. Suppose that we see such a conjunction at a time t 
when the Sun and Jupiter both have longitude λ. Let us now suppose that the next 
conjunction occurs at some known longitude λ + Dλ.  Our problem is to find the time this 
next conjunction occurs. Since the Sun moves much faster around the zodiac than Jupiter 
does, the time interval Dt between conjunctions is the time it takes the Sun to complete 
one full orbit from λ back to λ, which is of course one year of 1

4365 dy , plus the time it 
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take the Sun to go the additional distance Dλ. If the Sun moves uniformly, or more 
realistically, if we simply assume the Sun moves uniformly, whether it does or not, then 
the Sun will complete the final Dλ in time Dλ/ωS, where 1

4360 / 365 d
Sω , so in total 

 

 
S

t y λ
ω
Δ

Δ = +  

 
and in fact this is exactly how the Babylonian System A models computed the time 
interval between synodic events for the outer planets, except that they had to allow for the 
fact that they used tithis, schematic days equal to 1/30th of a lunar month, instead of days, 
and they approximated the Sun’s speed as 1°/tithi. Note that this computation of the time 
interval remains the same if we use oppositions rather than conjunctions, and in fact if 
you use events at any constant elongation of the planet and the Sun. This line of analysis 
was first elaborated by van der Waerden, who called it his “Sun-distance principle”.6  
 
      Stations and horizon phenomena such as acronychal rising and first and last visibility 
were considered and modeled by Babylonian astronomers. However, it is difficult 
accurately determine by observation both the position and time of these events, and it is 
only approximately true that the planet has a fixed relation to a uniformly moving Sun, or 
the real Sun, for that matter, in a sequence of such events. Whether or not the Babylonian 
astronomers understood the calculation in this way is, for our purposes, not important. 
What is important is that a Greek astronomer might have realized that the mathematical 
constraints and assumptions built into System A models, and in particular the assumption 
of a fixed relationship to a uniformly moving Sun, match very well with the actual 
properties of mean oppositions in geometrical models. 
 
     The following discussion will use algebraic notation for the convenience of the 
modern reader, but there is of course no implication that any ancient mathematician used 
such methods. What is important is that all of the operations needed are within reach of 
known Hellenistic mathematical methods. 
 
     Fundamental to System A are integral period relations.7  Let Y, L, A (not to be 
confused with apogee) and Z be positive integers, with A and Z relatively prime, and 
suppose that in Y years a planet, and most important for our purposes, the epicycle center, 
completes L revolutions in the zodiac, during which A synodic events of the same kind 
are observed, and the location of the synodic events completes Z revolutions in the 
zodiac. For the outer planets 
 
 Y L A= +  
 
and for the inner planets 
 
 Y L=  
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with Z = L for Saturn, Jupiter and Mercury and Z = L – A for Mars and Venus. Then the 
mean values of the synodic arcs – the changes in longitude of the synodic event and the 
planet (and its epicycle) between successive synodic events in units of revolutions – are 
 

 
  for Saturn and Jupiter

1    for Mars

Z

L

Z
A
L
A
Z
A
Z A
A Z

λ

λ

Δ =

Δ =

=

⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

 
and the number (integer plus fraction) of mean synodic arcs in one revolution is 
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The interval in years between successive mean synodic events is 
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A
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and the mean intervals in years for the epicycle and the event to circle the zodiac are 
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With y days per year, the corresponding mean speeds of the epicycle, the event, and the 
Sun, in units of degrees per day, are 
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Note that on average Saturn and Jupiter advance Z Lλ λΔ = Δ  and the Sun advances 
360 Zλ+ Δ in time TA , while Mars advances360 Zλ+ Δ  and the Sun advances 
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720 Zλ+ Δ  in time TA. Finally, since Mars advances 360° in time TL, it requires the time 
interval  to advance its final / (1 / )A L AT T T A Z− = + ZλΔ . 
  
     The relations given above are all average values, and in reality the arcs and intervals 
between successive synodic events fluctuate about the mean, but the period relations tell 
us that if a synodic event is observed at some longitude λ0, then after Y years and A 
successive events, and not before, the location of the synodic event will return to λ0, 
having circled the zodiac Z times, and the epicycle will have circled the zodiac L times, 
so that the event will have landed on 1A−  distinct other values of λ in the process. 
System A models this by distributing A λ’s on a circle at intervals Ii, i = 1…A, and 
successive synodic events progress in steps of Z intervals.8 In principle, the A intervals Ii 
are of arbitrary size subject to the constraint  
 

  
1

360
A

i
i

I
=

=∑
 
but, in reality, synodic arcs and intervals vary smoothly as a function of longitude, so for 
this reason and for computational efficiency the Babylonian astronomers assumed that 
the intervals are constant in zones of the ecliptic, with the number N of zones in all 
known systems being between two and six, and usually not of equal size. With N zones of 
size αi and constant interval Ii, there are Ni = αi/Ii intervals in the ith zone, and  
  

 
1

N

i
i
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     Usually, but not necessarily, the Ni intervals completely fill each zone and Ni is an 
integer. A synodic arc wi = ZIi is associated with each zone, so αi/wi is the number 
(integer plus fraction) of such arcs in the ith zone. Since there are P arcs in 360°, the 
values of wi are subject to the constraint 
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Furthermore, if an event lands in the ith zone at some λ, then the next event will be Z 
intervals farther, regardless of the size of the intervals. Thus if the next position is still in 
the ith zone, then its longitude is iwλ λ λ′ = + = + , but if that position is in the (i+1)th 
zone its longitude will be 1( )i imI Z m Iλ λ +′ = + + − , where imIλ + is the longitude of the 
beginning of the (i + 1)th zone, and similarly if the event lies in the (i+2)th zone (as 
actually happens for Mars and Mercury). 
 

     Since A/Z = TZ/TA, the relation i

i i

A
w Z
α

=∑  may be rewritten as 
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For Saturn and Jupiter Z = L and TZ = TL , so the epicycle has mean speed i i
i

A

w wv
T t
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in the ith sector, and the sum of the times spent in each sector, which are /i viα , is the 
time TZ = TL required for the epicycle to complete a single trip around the zodiac. 
 
     For Mars we can use instead 
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where . / (1 / )A A AT T A Z T T′ = + = − L

 
     There is one remaining problem to be addressed. If the planet is in opposition to the 
mean Sun, and in time interval /ZAT y Sλ ω= + Δ the planet advances an amount wi while 
the mean Sun advances an amount ZλΔ , then at the end of the time interval the planet is 
not in fact in opposition to the mean Sun. System A planetary models resolve this 
problem by adjusting the time interval for a synodic arc Dλ of length wi according to 
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so that the time interval required for the planet to advance wi differs from the mean time 
by the amount that the time required for the Sun to advance wi differs from the time 
required to advance the mean distance ZλΔ .9 Note that for Saturn and Jupiter, TA is close 
to 400 days, while ( ) /Ziw Sλ ω−Δ is about ±1 day for Saturn and ±3 days for Jupiter, so 
the correction from mean to true time is not significant. However, for Mars  is about AT ′
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93 days and ( )Ziw / Sλ ω−Δ varies between about –19d and 41d, so the correction is quite 
important. 
 
     The adjustment of the time intervals, and hence the implied speeds of the epicycle, 
does not upset the constraint on the wi values. For Saturn and Jupiter the true speeds in 
each sector are now 
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so we have 
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     Repeating the above for Mars using / (1 / )A A AT T A Z T TL′ = + = −  instead of TA yields 
exactly the same result:  

 i
L

i i
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Thus the constraint imposed by the period relation still holds exactly, and the epicycle in 
each case still completes one revolution in TL years. In passing, note that if we had 
assumed that 
 ( )ZA it T p w λΔ = + −Δ  

 
for any value of p, then the periodicity will still be preserved. 
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     Using the above analysis it is now straightforward to find the equation of center 
( )q λ λ λ= − for the outer planets. Since each System A model is a sequence of zones, we 

have that Dλi = αi in each zone. Since v¢i is constant in each zone, the time required to 
traverse each zone is /i it ivα ′Δ =  and during that time interval the mean longitude 
advances by the amount i L tλ ωΔ = Δ i .  Thus, from the beginning to the end of each zone, 
qi changes by the amount 
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and dq/dλ in each zone is, for the piecewise linear System A models, exactly equal to 
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From the values Dqi one can reconstruct q and adjust its level so that the extreme values 
are equidistant from the λ–axis, and the longitude A of apogee will be where q(λ) crosses 
the axis in a descending direction. Then, from the extreme values of q and from the 
slopes of q in the zones where q crosses the λ–axis, we can get estimates of e. 
 
     The parameters defining the various planetary models are available in many places.10 
The following charts compare for each outer planet the functions q(λ) derived from the 
known System A models with the q(λ) that follows from the equant using the parameters 
in the Almagest.11  
 
*****Fig 2 goes here****** 
 
*****Fig 3 goes here****** 
 
*****Fig 4 goes here****** 
 
 
     Although the discussion to this point has been entirely hypothetical, there is some 
evidence that might suggest the analysis discussed above was actually done by some 
ancient Greek astronomer. Neugebauer suggested that the contents of two Greco-Roman 
papyrus fragments are evidence for a greatly modified Babylonian System A scheme for 
Mars,12 based on the fact that heading for one of the six tables is Taurus–Gemini, which 
is also one of the six System A zones for Mars and, according to Neugebauer, the only 
known use of a Taurus–Gemini pairing. Jones clarified and extended Neugebauer’s 
analysis to reconstruct the six underlying values of wi used in the scheme,13 and 
suggested that the papyrus might be modeling a Greek kinematic model based on 
eccentricity 2 , rather than the conventional 5 2e 2 1e = . However, when a single table 
of very similar but not identical structure turned up in the papyri of Oxyrhynchus, the 
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association with Mars and System A seemed to Jones less probable.14 Nevertheless, in 
light of the above analysis in this paper, and in spite of the tenuous connection of the 
papyrus with either Mars or System A, it is worth considering an alternative 
interpretation, namely that the papyrus documents an analysis of Mars’ equation of center 
q from a System A scheme, much as outlined above. Indeed, let us consider a Mars 
scheme as above  
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and assume the numbers given in the papyrus are not wi values, as assumed by 
Neugebauer and Jones, but are instead iw′  values. Then from the iw′values one may derive 
both the underlying wi values for the scheme, which are 
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as well as the corresponding equation of center q(λ), which is shown in the Mars chart. If 
this interpretation is correct, then the scheme in the papyrus is clearly not derived directly 
from the standard Babylonian System A scheme, but we cannot rule out that it was 
derived from some other scheme that does not differ too much from the standard scheme. 
Indeed, it seems possible that it might be an incomplete account of an attempt to derive a 
System A scheme starting with a geometric model of Mars, but I see no way to advance 
the argument further given that the papyrus gives no hint about how the numbers were 
ever used. 
 
     The apogees and perigees in the various System A models are shown in Table 1. Note 
that in some case the apogees and perigees are not 180° apart. 
 
*******Table 1 goes here********* 

To get the e implied by a System A model, we compute 1 L

i

dq
d v

ω
λ
= −

′
 for the zones which 

ascend and descend through the λ– axis, and from these slopes we compute the effective e 
from the System A values of dq/dλ using the equations given earlier. The results are 
shown in Table 2. 
 
*******Table 2 goes here********* 
 
For comparison, the Almagest values of e give the slopes in Table 3. 
 
*******Table 3 goes here********* 
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     Generally, one would expect the widest zones to be associated with the fastest speeds, 
and vice versa, and so the perigee would fall in the widest zone and the apogee in the 
shortest. This is indeed the case for Jupiter, and for Mars all of the zones are equal width 
(60°) so the rule is indeterminate. For Saturn, the usual two-zone System A model has the 
situation reversed – the slow zone is shorter than the fast zone. However, there is an 
alternate Saturn model, denoted A¢ in the table, in which the slow zone is wider, in 
agreement with expectations.15

 
     The three Jupiter System A models have the same minimum and maximum synodic 
arcs (30° and 36°), and so give the same values for dq/dλ and e(A) and e(P). Note that 
e(A) agrees exactly with the Almagest value, but e(P) is too small. For the Babylonian 
Mars model  both e(P) and e(A) are too large, and for the Mars model suggested by the 
papyrus, both e(P) and e(A) are too small. For Saturn, all of the values are too small. 
 
     Note also that for all the Mars and Jupiter models, and Saturn System A¢ but not 
System A, the values of dq/dλ are generally of the form suggested by the equant: 
dq/dλ(A) is more negative than dq/dλ(P) is positive. Whether this reflects some 
observable property of the synodic arcs, or whether it was noticed by our assumed Greek 
astronomer and somehow motivated the equant, or is simply an artifact of the System A 
construction constraints, is not clear. 
 
     An alternative method to find e is to use the extreme values of q(λ). For the eccentric 
model these are , and for the equant . The resulting values are 
in Table 4. 

1sin (2 / )e R− 12 tan ( / )e R−

 
*******Table 4 goes here********* 
 
 
In the models with only two zones the sharp breaks at the maximum and minimum values 
of q do not model the function very well and are responsible for the discordant values of 
e derived from the extreme values of q. The models with more zones generally improve 
the models near the maxima and this is reflected in better estimates of e. 
 
     We have seen that for oppositions of the outer planets with the mean Sun it is useful to 
think of System A in terms of a discrete set of A points distributed around the zodiac, 
with subsets of the points evenly distributed at intervals Ii in zones of width αi. Within the 
ith zone it is useful to think of the epicycle center as moving through adjacent points at a 
constant speed 
 

 i i
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so in time interval  the epicycle center will advance in mean longitude by an 
amount  

/i it I v′Δ = i
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 i L iL tωΔ = Δ  
 
where ωL is the mean motion in longitude of the epicycle center. Then the change in the 
equation of center is simply . Note that the additive correction to Ti iq I LΔ = −Δ i A in the 
expression for accounts for the fact that when the epicycle center advances by a 

distance w
iv′

i instead of the average distance Zw λ= Δ , the faster–moving mean Sun will 

return to opposition with the epicycle center in time i

S

wt y
ω

Δ = + instead of the average 

time A
S

wt T y
ω

Δ = = +  (in these expressions we have y for Jupiter and Saturn, which 

becomes 2y for Mars).  
 
     Note also that instead of referring the opposition to the mean Sun and the epicycle 
center, we could just as well refer to the planet and its epicycle center, as long as we use 
the mean motion on the epicycle referred not to the epicycle apogee, in which case the 
speed would be the mean motion in anomaly A S Lω ω ω= − , but to a fixed sidereal 
direction, in which case the speed is simply S L Aω ω ω= + . Relative to such a fixed 
sidereal direction, e.g. the apogee of the deferent, the epicycle center advances on the 
deferent by wi and the planet advances on its epicycle by 360° + wi in time interval  

     for Jupiter and Saturn

2     for Mars

i

S

i

S

wt y

wt y

ω

ω

Δ = +

Δ = +
.  

 
Thus, we can understand that the reason that a geometrical analysis of the System A 
models actually works, and that the same System A model works for multiple synodic 
phenomena, is that the various synodic phenomena for the outer planets are, in fact, all 
reasonably consistent with the System A assumption that synodic intervals in time are 
linear functions of the synodic arcs in longitude, and that the slope of the line is 1/ωS, 
where ωS is the uniform speed of the planets on its epicycle relative to a fixed sidereal 
direction.  
 
     Inferior and superior conjunctions of the inner planets with the true Sun are, in 
principle, essentially identical to the above treatment of the outer planets. For an inner 
planet the epicycle center moves with variable speed around the deferent, the variation is 
about the mean speed ωL = ωS of the Sun, and the planet moves uniformly on its epicycle 
with speed ωP = ωS + ωA measured with respect to a fixed sidereal direction.16 Thus all 
of the results discussed above would be immediately applicable if not for the fact that (1) 
conjunctions of an inner planet with the Sun are not observable due to the glare of the 
Sun, and (2) for a variety of reasons, but principally the motion in latitude, the synodic 
time intervals and synodic arcs in longitude of the first and last visibilities do not, in 
general, all have the same linear relationship and so do not satisfy the expected 
relationships 
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360          for Mercury

720          for Venus

i

P

i

P

wt

wt

ω

ω

+
Δ =

+
Δ =

 

 
As a result, while the System A models for Mercury and Venus do a credible job of 
modeling the observed synodic phenomena,17 they do not do a good job of modeling the 
nonuniform movement of the epicycle center around the deferent and so do not yield 
useful information regarding the parameters of geometrical models. 
 
     Synodic months for the Moon–Sun system are strongly influenced by the nonuniform 
motion of both the Moon and the Sun. The figure below shows the synodic time interval 
Dt versus the synodic arc Dλ for all full moons in the 100 year interval beginning with  
–200 January 1. 
 
*****Fig 5 goes here****** 
 
 
The events along the left and right vertical edges occur when the Sun is near apogee and 
perigee, respectively, and similarly, those along the lower and upper horizontal edges 
occur when the Moon is near perigee and apogee. If in reality the Sun was moving 
nonuniformly and the Moon uniformly, the distribution would collapse vertically and the 
events would all be on a line (purple in the figure above) of relatively shallow slope of 
the form 
 

 1
327 d

L

wt
ω

Δ +  

 
where ωL is the lunar mean motion in longitude. Syzygies at the extreme left and right 
ends of this line therefore have the Sun moving at minimum and maximum speed, 
respectively, and the Moon moving at mean speed. On the other hand, if in reality the 
Moon was moving nonuniformly and the Sun uniformly, the distribution would collapse 
horizontally and the events would all be on a line (red in the figure above) of relatively 
steep slope of the form 
 

 
S

wt
ω

Δ  

 
Syzygies at the extreme upper and lower ends of this line therefore have the Moon 
moving at minimum and maximum speed, respectively, and the Sun moving at mean 
speed. Note that the lines cross at the point w = 29.11° and Dt = 29.53d, which are the 
mean synodic arc and synodic time for the Moon–Sun system. 
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     The System A model for the Moon incorporates the nonuniform motion of both the 
Moon and the Sun, and so the analysis is somewhat more involved that we found for the 
outer and inner planets.18 The synodic event is assumed to advance by arcs of w1 = 30° 
and w2 = 1

828 ° in its two zones and the time interval Dt is 29d plus two corrections, both 
given in units of large hours H,  which are four regular hours or 1/6th of a day (the major 
unit in the vertical scale of the figure). One correction, column G, depends on how far the 
Moon is from its apogee, and the second, column J, depends on how far the Sun is from 
its apogee. Column G assumes that the Sun is in its fast zone, and so near the right 
vertical edge of the chart, and the correction to Dt given by column G varies between 
about 2 2/3H to just short of 5H, in good agreement with the real variation, as shown in the 
figure below.19 When the Sun is in its fast zone, and so near the right edge of the chart, 
column J gives no correction, but when the Sun is in its slow zone, and so near the left 
vertical edge of the chart, column J subtracts about 0;57H from Dt, again in good 
agreement with reality.  
 
*****Fig 6 goes here****** 
 
     In order to estimate the values of e/R and r/R implied by the System A lunar theory, 
we  
may use the values of Dλ and Dt at the endpoints of the red and green lines. In general, 
syzygies on the red line have  
 
 ( ) ( ) ( ) ( )S S S Mt t q tλ λ λ= + = t  
 
and from any two successive syzygies at times t1 and t2 we get the relation 
 
 2 1( ) ( )S Mt q t q t tλ ω ωΔ = Δ + − = Δ  
 
where ωS and ωM are the mean motions in longitude of the Sun and Moon. Syzygies at 
the ends of the red line have 0°S S Sα λ λ= − = or 180° and so 1( ) 0°q t = and since in the 
time interval Dt we have αS advancing by the amount ωSDt we have, with M Sη ω ω= − , 
 

 ( )1
2( ) sin sineq t t

R
λ η− ⎛ ⎞= Δ = Δ⎜ ⎟

⎝ ⎠
 

at apogee and 

 ( )1
2( ) sin sin 180°eq t t

R
λ η− ⎛ ⎞= Δ +⎜ ⎟

⎝ ⎠
= Δ  

at perigee. Solving these for e/R we find e = 2.26 and e = 1.92, which average to e = 2.09 
and which is close to the true value. 
 
     Similarly, for syzygies on the green line we have  
 
 ( ) ( ) ( ) ( )M M M St t q tλ λ λ= + = t  
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and from any two successive syzygies at times t1 and t2 we get the relation 
 
 2 1( ) ( )M St q t q t tλ ω ωΔ = Δ + − = Δ  
 
In this case αM advances by the amount Dλ – (ωM  – ωa )Dt where ωa is the lunar mean 
motion in anomaly, and we find 
 

 sin( )
sin( ( ) )M a

r t
R t

η
λ ω ω

Δ
=

Δ − − Δ
 

 
at apogee and 

 sin( )
sin( ( ) 180°)M a

r t
R t

η
λ ω ω

Δ
=

Δ − − Δ +
 

 
at perigee, which yield r = 4.74 and r = 6.39,20 and which average to 5.57, somewhat 
larger than the true value which is near 5.25. 
 
     In summary, it seems plausible that a Greek astronomer with a reasonable 
understanding of Babylonian System A models for the outer planets and the Sun–Moon 
could have used those models to estimate the zodiacal variation of the equation of center 
for each planet, and from this, approximate values for the eccentricity e and longitude of 
apogee A required for geometrical models. The same method would work for the inner 
planets if conjunctions were observable, but they are not, and the variation of the 
observable synodic events – first and last morning and evening visibilities – is dominated 
more by the motion of the planet in latitude than the nonuniform motion of the epicycle 
center.  
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Table 1. The deferent apogee and perigee values deduced from the various System A 
models and compared to the Almagest values. 
 

 apogee perigee Almagest 
Mars A 126° 306° 
Mars (papyrus) 115.5(!) 297.5 115.5° 

Jupiter A 165.5 342.5 
Jupiter A¢ 154.5 345.5 
Jupiter A¢¢ 166 340 

161 

Saturn A 230 50 
Saturn A¢ 225 45 233 

 
 
Table 2. The eccentricities of the deferent deduced from the slopes dq/dλ at apogee and 
perigee of the various System A models and compared to the Almagest values. 
 

equant eccentric  
dq/dλ(A) dq/dλ(P) e(A) e(P) e(A) e(P) Almagest e 

Mars A –0.2970 +0.2183 7.76 7.35 8.91 6.55 6.00 

Mars (papyrus) –0.1988 0.1476 5.43 4.78 5.96 4.42 6.00 

Jupiter A, A¢, A¢¢ –0.0961 +0.0727 2.75 2.26 2.88 2.18 2.75 

Saturn A –0.0775 +0.0967 2.23 3.05 2.32 2.90 3.42 

Saturn A¢ –0.0932 +0.0834 2.67 2.61 2.80 2.50 3.42 

 
 
 
Table 3. The slopes dq/dλ at apogee and perigee that follow from the Almagest equations 
of center for the outer planets. 
 

 Value of e 2e/R dq/dλ(A) dq/dλ(P) 

Mars 6 0.2000 –0.2222 +0.1818 

Jupiter 2.75 0.0917 –0.0961 +0.0876 
Saturn 3.4167 0.1139 –0.1208 +0.1078 
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Table 4. The eccentricities of the deferent deduced from the extreme values of the various 
System A models and compared to the Almagest values. 
 

 (qmax – qmin)/2 e(eccentric) e(equant) Almagest e 
Mars A 13.21 6.85 7.04 6.00 
Mars (papyrus) 10.26 5.34 5.43 6.00 
Jupiter A 7.45 3.88 3.92 2.75 
Jupiter A¢ 5.77 3.01 3.03 2.75 
Jupiter A¢¢ 4.81 2.52 2.52 2.75 
Saturn A 7.73 4.04 4.07 3.42 
Saturn A¢ 7.92 4.14 4.18 3.42 
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Figure 1. A comparison of the equation of center for an eccentric (dashed line) and an 
equant (solid line). The eccentricity is intentionally large so that the differences can be 
seen. However, the differences are much smaller for all real planets relevant for ancient 
astronomy. 
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Figure 2. The equation of center for Mars from the Almagest (dotted line), the Babylonian 
System A (solid), and a Greek papyrus (ref. 13, dashed line). 
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Figure 3. The equation of center for Jupiter from the Almagest (dotted line), the 
Babylonian System A (solid) and System A¢ (dashed), and a Greek papyrus (ref. 5, dot-
dashed line). 
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Figure 4. The equation of center for Saturn from the Almagest (dotted line) and the 
Babylonian System A (solid) and System A¢ (ref. 10, dashed), 
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Figure 5. The distribution of synodic arcs ( dλ ) vs. synodic time intervals (dt) for all full 
moons between –200 BCE and –100 BCE (small triangles). The nearly horizontal line 
through the center shows the same distribution for oppositions of the real Sun and the 
mean Moon. The nearly vertical line through the center shows the same distribution for 
oppositions of the mean Sun and the real Moon. In all cases the points anywhere along 
the upper and lower edges have the Moon near apogee and perigee, respectively, and the 
points anywhere along the left and right edges have the Sun near apogee and perigee. 
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Figure 6. The distribution of synodic arcs ( dλ ) vs. synodic time intervals (dt) from the 
Babylonian lunar System A for all full moons between –200 BCE and –100 BCE (small 
triangles) compared to reality (open circles). The large vertical extension in time shows 
the effect of column G and is entirely due to lunar anomaly. The small vertical extension 
in time shows the effect of column J and is entirely due to solar anomaly. The solid lines 
through the center thus show the distribution of System A full moons if there was only a 
lunar anomaly (vertical line) or only a solar anomaly (nearly horizontal line). The heavy 
accumulation of points along the left and right edges for System A reflects the fact that 
lunar System A has only two zones, and most synodic arcs are entirely contained in one 
of the zones. The sparse points not on an edge are the arcs that cross a zone boundary. 
The lack of a slant to the right in the System A distributions is due to the fact that System 
A adjusts the synodic time interval, but not the synodic arc, for the effects of lunar (col. 
G) and solar (col. J) anomaly. 
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