Example for stationary points

Find all stationary points of the function:

$$
f(x)=2 x_{1}^{3}-3 x_{1}^{2}-6 x_{1} x_{2}\left(x_{1}-x_{2}-1\right) \quad x=\left(x_{1}, x_{2}\right)^{T}
$$

and show which points are minima, maxima or neither.

Solution:

Find stationary points:

$$
\begin{aligned}
& \frac{\partial f}{\partial x_{1}}=6\left(x_{1}-x_{2}\right)\left(x_{1}-x_{2}-1\right) \\
& \frac{\partial f}{\partial x_{2}}=6 x_{1}\left(-x_{1}+2 x_{2}+1\right)
\end{aligned}
$$

Stationary points are solutions of the system: $\left\{\begin{array}{l}\left(x_{1}-x_{2}\right)\left(x_{1}-x_{2}-1\right)=0 \\ x_{1}\left(-x_{1}+2 x_{2}+1\right)=0\end{array}\right.$

There are four possible cases:

1. $\left\{\begin{array}{l}x_{1}-x_{2}=0 \\ x_{1}=0\end{array} \Rightarrow x_{1}=0, x_{2}=0\right.$

The first point is $\mathrm{A}(0,0)$
2. $\left\{\begin{array}{l}x_{1}-x_{2}=0 \\ -x_{1}+2 x_{2}+1=0\end{array} \Rightarrow x_{1}=x_{2}, x_{1}+1=0 \Rightarrow x_{1}=x_{2}, x_{1}=-1 \Rightarrow x_{1}=-1, x_{2}=-1\right.$

The second point is $\mathrm{B}(-1,-1)$
3. $\left\{\begin{array}{l}x_{1}-x_{2}-1=0 \\ x_{1}=0\end{array} \Rightarrow\left\{\begin{array}{l}x_{2}=-1 \\ x_{1}=0\end{array}\right.\right.$

The third point is $\mathrm{C}(0,1)$
4. $\left\{\begin{array}{l}x_{1}-x_{2}-1=0 \\ -x_{1}-2 x_{2}+1=0\end{array} \Rightarrow\left\{\begin{array}{l}x_{2}=0 \\ x_{1}=1\end{array}\right.\right.$

The fourth point is $\mathrm{D}(1,0)$

We have 4 stationary points namely A, B, C and D.

Step 2

The nature of the stationary points

Compute the Hessian matrix:

$$
\left[\begin{array}{cc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}}
\end{array}\right]=\left[\begin{array}{cc}
12 x_{1}-12 x_{2}-6 & -12 x_{1}+12 x_{2}+6 \\
-12 x_{1}+12 x_{2}+6 & 12 x_{1}
\end{array}\right]
$$

Now we can determine the nature of each stationary points by considering value of Hessian at that point and whether Hessian is positive definite, negative definite or indefinite.

1. $\mathbf{A}(\mathbf{0 , 0})$
$\| G\left(0,0\left|=\left|\begin{array}{cc}-6 & 6 \\ 6 & 0\end{array}\right|=-36<0\right.\right.$
A $(0,0)$ is not a minimum and not a maximum since G at that point is indefinite.

2. $\mathbf{B}(-1,-1)$

$|G(-1,-1)|=\left|\begin{array}{cc}-6 & 6 \\ 6 & -12\end{array}\right|=72-36=36>0$

B $(-1,-1)$ is a maximum since we can verify that for all $\mathrm{x}, x^{T} A x<0$ i.e. negative definite.
3. $C(0,-1)$
$|G(0,-1)|=\left|\begin{array}{cc}6 & -6 \\ -6 & 0\end{array}\right|=-36<0$
$\mathrm{C}(0,-1)$ is not a minimum nor a maximum since it does not satisfy that for all x , $x^{T} A x<0$ or $x^{T} A x>0$. The eigenvalues of G at this point have both positive and negative entries (verified by Gaussian elimination)
4. $\mathrm{D}(1,0)$

$$
|G(1,0)|=\left|\begin{array}{cc}
6 & -6 \\
-6 & 12
\end{array}\right|=36>0
$$

$\mathrm{D}(1,0)$ is a minimum since G is positive definite i.e. for all x i.e. $x^{T} A x>0$.

Solution

$(-1,-1)$ is a maximum
$(1,0)$ is a minimum

