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A Fortran IV computer program is documented, 
implementing a Galerkin finite-element method for 
solving the non-linear shallow-water equations on a 
limited domain. The resulting ordinary differential 
equations are integrated using a finite-difference 
discretization method in time. A time-extrapolated 
Crank-Nicolson numerical integration scheme is 
employed to quasi-linearize the non-linear advective 
terms. The three equations constituting the shallow- 
water equations are coupled at each time step, making 
it possible to use larger time steps. The output of the 
program includes a line printer plot contouring the 
height field. A compact storage scheme is provided in 
which advantage has been taken of the sparsity of the 
global matrices. 

A Gauss-Seidel iterative procedure is employed to 
solve the liaear systems of algebraic equations at each 
time step. Program options include the determination 
at each time step of the numerical integration of two 
of the integral invariants of the shallow-water 
equations. 

Stable long-term runs were achieved using a 30- 
minute time step. 

INTRODUCTION 

The shallow-water equations are used in studies of tides 
and surface water run-off; they can also be used to study 
large-scale waves in the atmosphere and ocean if terms 
representing the effects of the earth's rotation (Coriolis 
terms) are included. Galerkin finite-element techniques 
have been applied to the shallow-water equations by the 
following workers, to cite but a few: Baker 1'2, Cullen s -a, 
Brebbia and Partridge 3, Connor and Brebbia 4, Smith and 
Brebbia 9, Wang et al. 1° and Hinsman 11. Only very few 
finite-element programs, however, have been published 
that are aimed at making it possible to practically apply 
the method to solve the shallow-water equations. 

In the first part of this paper, illustrated by a test 
problem, a Galerkin finite-element application to the 
system of the shallow-water equations is described. 

The second section is devoted to a description of the 
finite-difference method employed for the time integ- 
ration, the implementation of boundary conditions in the 
finite-element model (f.e.m.) and a description of the 
different types of element matrices required for assembl- 

ing the global matrices. A compact storage scheme is also 
briefly described, for which advantage has been taken of 
the sparsity of the assembled global coefficient matrices, 
and which makes it possible to reduce core storage to a 
minimum. 

The remainder of the paper contains a detailed de- 
scription of the program FESW and specifications for its 
use .  

DESCRIPTION OF THE MODEL 

Shallow-water equations 
The shallow-water equations model can be written as 

follows: 

8u ~u ~u ~p ?~t+Ujxx+V~y+?~x - l v=O (la) 

~v Ov c~v ~(o 
~t+u~-+v-~- +7. +/U=O cx cy c) 

(Ib) 

(lc) 

O<~x<~L, O<~y<~D, t>O 

where L and D are the dimensions of a rectangular 
domain of area ,4 = LD. 

Here u and v are the velocity components in the x and y 
directions respectively; q, =,qh is the geopotential; h is the 
depth of the fluid; ,q is the acceleration of gravity; and f i s  
the Coriolis parameter, required when we consider a fluid 
in a rotating frame of reference. 

The Coriolis term f is given by: 

./=.fi+ flO'- D/2) fl = ~3~.1 (2) 
t ' y  

with f and fl constants. 
Periodic boundary conditions are assumed in the x 

direction while in the y direction the boundary condition 
is: 

v(x, O, t)= v(x, D, t)= 0 (3) 
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With these boundary conditions and with the initial 
condition: 

w(x,y, 0 )=p (x ,y )  (4) 

where 

w=(u, t;, q~)' (5) 

the total energy 

0 0 

(6) 

is independent of time. 
Also the average value of the height, which is pro- 

portional to the total mass: 

L D  =lfihdxd,  
0 0 

(7) 

is independent of time. 

Test problem 

The test problem used here is the initial height field 
condition no. 1 of Grammeltvedt~2: 

h(x, y)= H 0 + H, tanh \{9(D/2-2D Y)) 

• , 2 1 9 ( D / 2 - y ) \  . [ 2 ~ x \  
+H2secn ~ .... 2 ~ ) s l n ~  " ) (8) 

The initial velocity fields were derived from the initial 
height field using the geostrophic relationship: 

Fh Fh 
u= -(g/ ,D~ , t,=(g/D ~ (9) 

( y  UX 

The constants used were 

L = 4400 km 
D = 6000 km 
j =  10 -~ s- 

f l= l .5  x 10 l l s  1 

,q  = 10 m/s 
Ho = 2000 m 
H 1 =220 m 

m -~ H2=133 m 

(10) 

The time and space increments used were 

Ax = Ay = 400 km 

At= 1800 s (11) 

Formulation of  the finite-element model 
We approximate the shallow-water equations model 

equation (1), by the Galerkin f.e.m. The rectangular 
domain is subdivided into triangular elements forming a 
regular grid. 

Linear piecewise polynomial interpolation functions 
were employed, to save computing time and also for the 
sake of simplicity. Over a given triangular element, each 
variable was represented as a linear sum of the in- 
terpolation functions, i.e. 

3 

u,,t~ ~ ui(tJV j 
i ' l  

where uj(t) represents the scalar nodal value of the 
variable u at the node./of the triangular element, and ['i is 
the basis function (interpolation function) which can be 
defined by the coordinates of the nodes. 

Galerkin's f.e.m, is a particular weighted-residual me- 
thod in which the trial functions are the same as the basis 
functions used for representing the variables. 

For instance, given the system of equations: 

Liu)- . [=O x • A (13) 

with the boundary conditions: 

S(u)=p x ~ S (14) 

and an approximating function: 

bl -~- 2 ~k Vk 
k = l  

(15) 

which satisfies the boundary conditions (14), the residual 

e, = L(Z~k V k ) - f  (16) 

is orthogonalized with respect to the trial functions V~ 

j[L(E~kVk)-.f]V,dA=O, i =  1 , 2  . . . . .  N 

4 

and this relationship can also be written: 

(17j 

<e,, V i )=O i=  1, 2 . . . . .  N (18) 

The notation of equation (18) defines the inner product. 
Relation (18) holds also for an arbitrary subdomain or 

element of the whole domain and we may focus our 
attention on individual elements, provided the basis 
functions V i guarantee the interelement continuity nec- 
essary for the assembly process. 

We have a set of equations such as (17) for each element 
of the whole domain. The next step in the Galerkin f.e.m, is 
to assemble the equation for the whole domain following 
well-known assembly rules. The complete system of 
equations thus assembled is next solved for the time- 
dependent coefficients of the basis functions. The advan- 
tage of the Galerkin f.e.m, is that it enables us to proceed 
and derive a finite-element model even in the absence of a 
classical variational principle. 

Let us now start with the continuity equation which is 
the first to be solved during a time step. 

Writing it following the Galerkin f.e.m, we obtain: 

< , v,)+(bT(q~u), Vl)+(~y(~ov), v~>---o (19) 

where by the notation of the inner product of each term 
with the trial function we mean: 

<[(x, y), V i ) =  ~ J(x, y )V idxdy= 

,,1 ........ ~Job~l (20) 
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where M is the number of elements in the integration 
domain. 

The advection terms in the continuity equation are 
usually integrated by parts (using Green's theorem) to 
shift from derivatives of the variable to derivatives of the 
basis function. This permits the use of basis functions with 
lower-order interelement continuity and often offers a 
convenient way of introducing the natural boundary 
conditions that must be satisfied on some portion of the 
boundary. This integration gives: 

~'P + [. (~ouV3 1 ~V~ (cqt" Vi) dy -- ((q~u),~x- ) + 

(1 Uj ~ Vj ~ Vj 
( ~  v~, v~) + (u~V~u~- x , v~) + (v~V~U~yy-, v~) - 

( f  VkVk, V~) + (q~f cV~xxk, V,)=0  (27) 

v~ 3 V~ t? Vj 
( ~t V~, V~) + (u~V~b~, V~) + (v~V~v~ "V~) + 

• ( ~ V  k AG'UkVk, V~) + (~Ok c~y ' Vi) =0 (28) 

~(qWV3y i d x -  ((qw), aV~)c~y = o  (21) 

Taking into account the cyclic boundary conditions in the 
x direction and the boundary condition on v, the com- 
ponent of velocity in the y direction, the second and fourth 
terms of equation (21) vanish. 

The final expression for the continuity equation is: 

8~0 ¢~V i) ¢~ V i 
( ~ i '  v~) - ((q~u),-~x - ((~v), ~y-)  = o (22) 

Following the Galerkin f.e.m., the momentumequa-  
tions (la) and (lb) are written as: 

~u 8u 8u O~o, 
(~t' v~) + (UUx, v,) + (V~y, v,) - (fv, v,) + (Ux v,) 

=0  (23) 

Ov ~v Ov 0~o 
(~t' V') + (u~x' V,) + (V~y, Vi) + (F u, V,) + (~yy, V,) 

=0 (24) 

We assume that over an element the same basis functions 
Vapply for the u, v, q~ unknowns, i.e. that: 

3 

j = l  

3 

u ~- ~ uj(t)Vj (25) 
j = l  

3 

j = l  

where ~oj(t), u~(t), vj(t) are the time-dependent nodal values 
of the variables ~o, u, v respectively. 

Upon substituting these expressions into equations 
(22)-(24) one obtains: 

tVi)  c~Vi) 
(~t  ~ V~, V~)- (%u~V f k ,  ~x - (qbvkV yk'  -fyy =0 

(26) 

IMPLEMENTATION OF THE GALERKIN Le.m. 
Time integration 

The time-extrapolated Crank Nicolson method was 
used for integrating in time the system of ordinary 
differential equations resulting from the application of the 
Galerkin f.e.m, to the shallow-water equations model. 

In this method, previously used by Douglas and 
Dupont t3 and Hinsman ~, an average is taken at time 
levels N and N +  1 of expressions involving space de- 
rivatives, while the non-linear advective terms are quasi- 
linearized by estimating them at time level N +½ using the 
following second-order approximation in time: 

uX+~-u * - -  -)u-3" N_]ut. N-I +0(At 2) 

v x+~ =v* =azvN--~VN-~ +O(At 2) (29) 

At each time step the shallow-water equations system was 
coupled, i.e. the solution of each equation after one 
iteration at a given time step was used to solve the other 
two equations for the same iteration for the same time 
step. 

Upon introducing time discretization in the continuity 
equation (26), which is the first to be solved at a given time 
step, one obtains: 

(((.~;+ 1 - - ( p y ) V j ,  Vi5 - 

2( [ <~p~+, , ,~v, ~v, 7 " "+Irk Vyk, )J-- ukV~Vk, ~,X)+(~Oj ,* 

At[- . , gVi 3V i 1 
-2 L (~°juk Vyk' ,?X )+(q~yv*Vyk' ~3Y ) J = 0  (30) 

By defining the following matrices: 

M = J" j" VjVidA 

Kt= VjVkUk ~X d A +  VjVkV* 
A 4 

the continuity equation can be written as: 

(31) 

At 
M(~o~ +1 _ ¢p~) _ -2 K~(~o~ +1 + q~) = 0 (32) 

Introducing time discretization in the same way into 
the momentum equations (27) and (28), one obtains: 
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I1 I 
((11, -qv,. C’,) + 

*I 
2 

<11;+ lllfvh;_;. Vi) + (“4 + I rf Vkfc$ b.,) + 

. , 

(pfi_;, Vi) + 
1 

c (U~U:Vk’~, 
^ 

“:’ Vi) + (UJV: Vh~, Vi) + (~;~~~, ‘j) - 1 
At(.fiv: V,, V,) = 0 (33) 

and 

((v:‘+‘-qvj, I/,)+ 

T (q+‘u;+l 

I 

VkC$ Vi) + (t’7 + 1 t$ vk""! Vi) + 

& 

<q;+$! vi) + 

1 

1 + 

At(,jirj: + ’ V,, Vi) = 0 

Using the following matrix definitions: 

n . 

M= 
JJ 

VjV,dA 

4 

n* 

K,, = JJ qk “2 V,dA 

1 

4 

the u-momentum equation becomes: 

(34) 

(35) 

M(u;+’ -u;)+y K,(~;+~+uf)+~y(K;;~ + K;,)+AtP, 

=o (36) 

while by defining: 

(37) 

“n 

P, = JJ .~u;+~V~V;~A 

4 
The v-momentum equation becomes: 

M(vJ + ’ 

=o (38) 

Element matrices 

Using linear basis functions over triangular elements 
and introducing the well-known natural or area coor- 
dinates14 one can obtain exact integrations using the 
foIlowing formula for area integrals’“: 

* n 

JJ L’; L”2 Lf,dxdy = 
a!b!c 

(a+b+c+Zj! 
4 

(39) 

(a, b, c integers), where L,(i = 1,2,3) are the basis functions 
for the triangular linear element as well as the natural 
coordinate variables. 

The natural coordinates in terms of the Cartesian 
coordinates for a given triangle are: 

Li ji (a, y + bix + ci) i= 1, 2, 3 (40) 

where 

1 X1 

2A= 1 x2 

1 xj 

ai = _l’j - _Vk, 

for instance 

.I’1 

Y2 =Z(area of triangle 1-2, -3) (41) 

413 

hi = xk - xi, ci = xjyk - v,yj (42) 

ui =F2-Y3, b, =x3-.x2, c, =x2y3 -x31’2 (43) 

i, ,j, k cyclically permuted (i, j, k = 1, 2, 3). 
The derivatives of the shape functions Li are: 

c)L, hi L7ki_ ci 

c?x 2A’ c?y 2A 
i=l, 2, 3 (44) 

There are basically four types of element (3 x 3) matrices 
required in the Galerkin f.e.m. of the shallow-water 
equations, as follows: 
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an 

(a) M= JJ VjVidA i,,j=l, 2, 3 

A 

The integration formula (39) yields: 

an 

JJ VjVidA =A 
12 

A 

@I ** al/, JJ VkdxdA or 
* "I/ JJ !?!dA k ay 

(47) 

A A 

The use of integration formula (39) in conjunction with 
equation (44) yields, for instance, 

(45) 
=;4 

(2p,+p,+p,)b, (2Pi+P2+P3)& (2Pi+P,+P& 

(Pi +2p, +p3)h1 (Pi +2P, +P3)b2 (P1+2P, +pJ% 

(pI+pz+2p,h (~l+pz+2pJb, (PI+PZ+~P~)~~ 

JJ qmv axjdA= ..* bi JJ 1 bi bi 

k ax Vk2AdA=2A.62A=6 

A A 

i.e. 

n* nn @) JJ V,p, 2 V,dA or JJ Vkpj fz$ V,dA 

4 A 

where pj stands for either Uj, rj or ‘pj. 
For instance 

n” *m 

JJ Vkpj ‘2 V,dA = JJ V,p, ;; V,dA 

A A 

= ~ pjbj 

nn 

JJ Vi V,dA 

an n * 

(4 JJ VjpjV, ‘gxi dA or JJ VjpjVk ‘% dA 
ay 

A 

For instance 

A 

*n *n 
JJ VjpjVk a:! dA = JJ VjpjVk ‘2 dA = 

(53) 

(46) 
implementation qf the boundary conditions 

After the assembly process we obtain a global N x N 
matrix K, and the system of linear equations to be solved 
has the form: 

(48) 

(49) 

(50) 

1 

1 

2 1 
(51) 

(52) 

K x R 

(nxn) (nxl)=(nxl) (54) 

In order to implement boundary conditions in the 
Galerkin f.e.m. we have here adopted an approach 
suggested by Payne and Irons’ ‘j and mentioned by 
Huebner”. This approach consists in modifying the 
diagonal terms of K associated with the specified nodal 
variables by multiplying each term by a large number, say 
10’ 6 (chosen by consideration of the significant number of 
digits for the given computer and the size of the field 
variables), while the corresponding term in R is replaced 
by the specified nodal variable multiplied by the same 
large factor times the corresponding diagonal term. The 
procedure is repeated until all prescribed boundary nodal 
variables have been treated. 

After having made these modifications one can then 
proceed to solve the set of equations using the modified 
matrix K and the modified vector R. 

For instance if in the matrix K we wish to implement 
the boundary condition: 

X*=81 

Then the modification is: 

‘li,, k,, k - IN 

\ 

k rl k r2 ‘k,,lO1h krN 
\ 

\ 
\ 
\ 

k NI k N? iNN 

x1- 
x2 

RI 

R2 

X, fi/k,;lO’ 

XN 
_ 

If the rth equation is considered, it can be observed that 
the desired boundary condition has been imposed as: 

k,,X,+k,,X,+ . . . +k,,1016X,+... +k,.NXN=&.k,;1016 

(57) 
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1 2 3 4 5 6 7 
i 222222222  IIIii 000 999 

222222222  iiii 000 999 
222222222 iiiii 000 999 
22222~22 IIIII 000 99 
222~22222 Iiiiiii OOb 99 
222222222 IIiiii 000 99 

3 222222222 IIIIiii O0 99 
2£22222222 IIiiiii O0 99 
2222222222 I I i i i  0 99 
2222222222 ii O0 999 
2222222222 III O0 999 
2222222222 Iii O0 999 

5 2222222222 IIi O0 999 
22J2222222 ii O0 999 
d222222222 IIIi O0 99 

6 2222222222 IIIiii 0 99 
222222222 l l l l l l  O0 99 
~22222~22 l l l l l l l  O0 9g 

7 222222222 l l l l l l l  O0 99 
222222222  l l l l l l  000 go 
222222222 I I I I I i  00O 99 

8 222222222 lllll O0 999 
222222222 l l l l  O0 999 
222222222 lllll 000 9999 

9 222222222 I I I I  000 ~ - ~ .  
222222222 III~ 000 999 
2222~2222 I i i i  O0 999 

I0 ~F2222222 III 000 999 
/~,~2~2 IIII O0 999 
222222222 IIII O0 999 

I i  222222222 I I I I  O0 999 
2~222222~ l l l l  0 999 
d2222222~ I l l  0 999 

12 2d22222~2 IIi 0 g9 
222222222 I I I  0 99 
2~222d222 I I i  0 99 

I )  22~222222 I I i  0 99g 
~Z2222222 i i i i  O0 9~9 
222~22~22  I I i i  00 99 

I~ ~2222222~ l l l l  O0 99~ 
2~2222~2~ I l l  O0 999 
~22~222 I I I I  O0 99 

15 ~ £ ~ 2 2 2 ~  f i l l  O0 9~99 
~2~2222~ f i l l  "~ ~999 
~ 2 2 2 2 ~  l l l l  0 9999 

16 ~ 8 ~ 2  l l l l l  000 999 

8 9 i0 
8S888888 
88868888 
8~888888 
88088888 
8888~888 
88808888 
8~88888 
8~88888 
8~88888 
8888888 
888~888 
8~88888 
8888888 
8~88888 
8~8888~ 
8888888 
8888888 
8886888 

88888888 
88866888 
88888888 
88888888 
8 ~ 8 8 8 8 8  

888~88888 
88~888888 
888~88888 

8~8~888888 
8 ~ 8 ~ 8 8 8 8 8  

8~8~,~o8888 
8 ~ 8 8 8 8 8 8 8 8  

888~888~d888 
~ 8 ~ 8 ~ 8 8 8 8 ~ 8 8 8  

8 8 8 8 ~ 8 8 ~ 8 8 8 8 8 8 8  
~ 8 ~ 8 8 8 ~ 8 8 8 ~ 8 8 8 8  
88888888888o~888  
~ 8 8 8 ~ 8 8 8 ~ 8 ~ 8 8 8 8  
~888888888888888  

8 8 8 8 8 8 8 8 ~ 8 ~ 8 8  
= 8 8 8 8 8 ~ 8 8 8  

8 ~ 8 8 8 8 8 8 8 ~  
8 8 8 8 8 8 8 8 8 8 8  

8 8 8 8 5 8 8 8 8 8  
888~8~8~88  

8 8 8 8 8 8 8 8 8  
8 8 8 8 8 8 8 8 8  

8 8 8 8 8 8 8 8  

II 12 

1 ~ 3 4 5 6 7 8 
MMEAI',x 2oo.oo M 

10 11 1~ 
£ N E ~ V x  6 , 2 S 0 4 0 Z £ * Z O  

Figure 1. Initial hei.qht field contours (every 50 m). A x = A y = 4 0 0  km 

i.e. 

Xr=#r, 

kri<<k," 10 '~ i=  1, 2 . . . .  n i@k (58) 

Assembly and numbering of nodes 
The element matrices relevant to the Galerkin f.e.m, of 

the shallow-water equations are first set up according to 
equations (45)--(53) and then assembled into global mat- 

rices. Each triangle has local element (3 x 3) matrices 
which need to be scattered into global position in the 
global coefficient matrices. An element connectivity table 
is established which assigns the local (3 x 3) matrices to 
their place in the (N x N) global matrix. Whenever a term 
is assigned to a matrix location where another term has 
already been placed, it is added to whatever value is there. 

" h~s procedure is usually termed Boolean assembly. In 
order to proceed with the assembly, it is necessary to 
number the nodes and the elements. By labelling the 
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HMEAN: 1998,38 ~ ENERGY= 6,2~1339E+20 

1 2 3 4 5 b 7 
1 22222222 111 O0 9 9 9  

228222222 1 1 1 1  O0 9 9 9  
~ Z 2 2 2 P 2 ~  1 1 1 1  O0 9 9 9  

2 ~ 2 2 Z 2 2 ~  1 1 1 1  GO 99 
2 2 Z ~ 2 2 2 2 2 2  111 0 0 0  99  
~ 2 2 2 ~ 2 2 2 ~ 2  11 

3 222222222222 111  
222222222222 111  
222222222222 111 
Z22~22222222 1 1 1 1  
2~2222222222 I l l  
d222222222222 1 1 1 1  

5 222~222222222 111 
22~222~222222 I I i  
2222~2~2222~ IIi 

6 22222222222~ III 
222222Z22222 I I I  
~ZZ2~222222 III 

7 2222~222222 i i i i  
222222~22 I i i i i  
2Z2222Z2 I i i i i i  

8 ~ 2 2 2 2 2 2  I i i i i i  
~ 2 2 2 ~  l l l l l l  
222~2~22 I I I I I  

q 222222~2 I I I I I  000 
Z2Z~ZZ I I I I  000 
ZZ~dZZ22 I I I I  000 

lO i ~ 2 ~ 2 2  f i l l  000 
~Z2Z~ZZ~ I I i i  O0 
Z ~ ? ~ 2 2  l l l l l  O0 

11 2Z~22~22 l l l l  O0 
Z Z ~ 2 2 2 2  I I I I  O0 9 9 9  
2 ~ 2 ~ Z Z ~  I l l  O0 99 

12 ~ 2 7 ~ 2  111 O0 99  
~Z~2~222 1 1 1 1  O0 999 
Z~222222 III  O0 999 

13 ZZZZ22Z22 III 0 999 
2~Z222222 111 O0 999 
7222Z~222 I l l  O0 999 

~& ~ ~  I I  0 9999 
Z~22Z~ZZ2 II 0 9999 
2~2Z222~2 Ii O0 9~99 

15 22222222 II O0 9~9 
Z2ZZZ222 I l l  O0 9999 
z z e z z a z Z  l t l  O0 9 9 9 9  

16 2ZZZZZ22 I I I  O0 999 

8 9 10 
8~8883888888 
8688b~888888 

8 ~ 8 ~ 8 8 8 8  
~88~t~8~b8888 

88~888885888 
000 999 88888888888 

000 999 88888d88888 
000 99 88888~8888 

O0 99 888888888 
000 99 08888~8888 

00 099 888888888 
000 99 888~80888 
O0 999 888~8888 
O0 999 58888888 
O0 999 88088888 
O0 9999 8888888 

OOO 999 8888@888 
O0 9c)'~ 88888888 
O0 99% t}88888888 

O0 999 888e8888 
90 999 b~88888 

OuO 999g %8888888 
00 9999 88888888 
O0 99'99 88888888 

999 8~88d~@ 
9999 88888888 
999 8888888d8 

999V 888888888 
999 .88%888888 

9999 8868888888 
999 ~dSS~88868% 

8n888888888 
8 8 8 8 8 8 8 8 8 8 8  
8 8 8 8 8 6 8 8 8 8 8  
8~08~88~88 
b ~ 8 8 8 8 8 8 8  

~ 8 8 8 8  
8 8 8 ~ 8 8 8 8  
x8~888888 
80~88888 

8 8 ~ 8 8 8 8 8  
0 8 8 8 8 8 9 8 8 8 8  
8 8 ~ 8 8 8 8 8 8 8  

~88888888888 
~ 8 H 8 ~ 8 8 8 8 8 8 8  
8 8 8 8 ~ 8 6 U 8 8 ~  

11 12 

1 2 3 4 5 6 7 8 9 10 11 12 

Figure 2. Height.field contours qlier 2 days. Ax = Ay = 400 kin, At = 1800 sec using Galerkin fe.m. 

nodes across the shortest dimension of the domain, it is 
possible partially to minimize the bandwidth of the global 
coefficient matrix. On the other hand, the numbering of 
the elements does not affect the computational aspects of 
the problem. 

For sophisticated routines of node-ordering in order to 
obtain a small bandwidth, see George 18, Felippa and 
Clough 19 and Desai and Abel '4. 

Compact storage scheme./or sparse matrices 
The global (N x N) coefficient matrix generated by the 

assembly process is very sparse, as the maximum number 
of triangles incident on one point of six. Therefore each 
row in the global N x N matrix has at most seven entries 
and it is an advantage to store the matrix in a compact 
manner to save fast-core storage. The overhead for 
reducing an (N x N) matrix to an (N × 7) matrix is the need 
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H~'EAN= 1999,05 M ENERGY= 6,252979E*Z 

1 2 3 4 
1 2 2 2 2 2 2 2 2 2 2 2 2  1111  

2 2 2 2 2 2 2 2 2 2 2 2  1111 
2 2 2 2 2 2 2 2 2 2 2 2  1111  

E 2 2 2 2 2 2 2 2 2 2 2 2  1111  
222222222222 IIII 
222222222222 IIii 

3 222222222222 IIIi 
~2222222222 111 
Z2222222222 111 

4 2222222222 1111 
2222222222 1111 
22£2222222 1111 

5 2222222222 111 
2222222222 111 
2222222222 111 

6 ~22222222 1111  
2222222222 1111 
22222222222 1 1 1 1 1  

7 222222222~2 IIIII 
22222222222 11111 
2 2 2 2 2 2 2 2 2 2 2  1 1 1 1 1  

8 2 2 2 2 2 2 2 2 2 2 2 2  I I I I I i  
Z ~ - ~ 2 2 2 2 2 2 2 2  i i i i i i  
222222222222 i i i i i  

9 222222222222 llll 
222222222222 IIII 
~ d 2 2 2 2 2 2 2 2 2 2  ! I I i  

I0 2 ~ 2 2 2 2 2 2 2 2 2 2 2  111 
?22?2£2222222 IIi 
2 2 2 2 2 2 Z 2 2 2 2 2 2 2  IIIi 

i l  Z72222~f222222 I I~ I  
2 ~ f 2 2 2 2 2 2 2 2 2  IIi 
2222:~22222 111 

12 2 2 £ ~ 2 2 2 2 2  i i  
222222222 111 
222222222 I i i  

13 2 2 2 2 2 2 2 2 2  I I I  
222222222 III 
222222222 111 

14 22222222 III 
E 2 2 2 2 2 2 2 2  111 
2 2 2 2 2 2 2 2 2 2 2  111 

15 2 2 2 ~ 2 2 2 2 2 2 2 2  iii 
222222222222 111 
222222222222 1111 

16 222222222222 ii!I 

5 8 7 8 9 10 11 
O0 9999  8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8  
000 999 8 8 8 8 8 8 8 8 8 8 8 E 8 8 8 8 ~ 8 8 8  
O00 999 8 8 ~ 8 8 ~ 8 8 8 8 8 8 8 8 8 8 8 8 8 8  
O0 9~99 8 ~ 8 8 ~ 8 ~ 8 ~ 8 8 8 8 8 8 8 8 8 8 8  
O0 999 88888~8888~888888888 

000 9q99 8886~888888888d8888 
O0 999 8888~8888888888888 
O0 9999 8888888888888888888 

O0 9999 88888888888888888888 
0 9999 888886888888888888888 
O0 9999 88888888888888888888 
O0 9999 88888888888888888 
000 999 8 88888888 
0000 9999 888d~888 
000 99999 8888~888 
0000 99999  

0000 9 9 9 9 9 9 9 9 9 9 9  
0000 9 9 9 9 9 9 9 9 9  

0000 99999  
0000  g~999 

0 0 0 0 0  99999  
00000  9999 8 
0 0 0 0 0  9999 88 

000000 999 8888 
0 0 0 0 0 0  999 8 8 ~ 8  

8 8 8 8 8 8 8  
8 8 8 8 8 8 8  
8 8 8 8 8 8 8  
8 8 8 8 8 8 8  
8 8 8 8 8 8 8  
8 8 8 8 8 8 8  
8 8 8 8 8 8 8  
8 8 8 8 8 8 8  
8 8 ~ 8 8 8 8  
8 8 8 8 8 8 8  

0 0 0 0 0  999 
0000 99 

0000 999 
0000 99999  
OuO 99999  
000 g 9 9 9 9 9 9  

000 9999g  
000 99 

8 8 8 8 8 8 8 ~ 8 8 8 8 8  
8 8 8 8 8 8 8 8 ~ 8 8 8 8  

8 8 8 8 8 8 8 8 8 8 8 8 8 8  
8 8 8 8 8 8 8 8 8 8 ~ 8 8 8  
8 8 8 ~ 8 8 8 8 8 8 8 8 8 8  
~ 8 8 8 8 8 8 8 8 8 8 8 8 8  

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8  
8 8 8 8 8 8  88~8  

O0 
O0 99 
0 99 
O 99 
0 99 

O0 99 
O0 999 
O0 

O0 

99 8 8 8 8 8 8 8 8 8  888  
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8  88 
8 8 8 ~ 8 8 8 8 8 8 8 8 8 8 8 8  8 

888888888888888888 
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8  8 
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8  8 

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8  88 
9 9 9 9  8 8 8 ~ 8 8 8 8 8 8 8 8 8 8 8  88 

~99 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8  8 3 8  
O0 9999  
O0 999 
O0 999 
O0 9999  

12 

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8  
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8  
8 8 5 8 8 8 8 8 8 8 ~ 8 8 8 8 8 8 8 8 8  

8 8 8 8 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8  

1 2 3 4 5 6 7 8 9 | 0  11 12 

Figure 3. Height.field contours qJter 10 days. Ax = Ay =400 km, At = 1800 sec using Galerkin fe.m. 

for a correlation matrix also of size N × 7, to tell us the 
seven nodes involved in any one row of the coefficient 
matrix. The correlation matrix is set up by searching the 
global correspondence table for the six triangles contain- 
ing the node i. The six triangles found are then compared 
and sorted to produce the seven nodes interacting with 
node i (this includes node i itself). The seven nodes are then 
arranged in ascending order. Other efficient compact  

storage schemes for sparse matrices have been proposed 
by George is and Duff and Reid 2°. 

Solution of the linear system O[ equations 
For  solving the system of linear equations, the method 

adopted in this program was the iterative one of Gauss -  
Seide121'n which has the virtue of simplicity. 

If a direct solution is preferred, use can be made of the 
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frontal technique p rogram of I rons  23 as documented  by 
Hinton  and Owen 24. 

User-supplied S.O.R., ADI  or conJugate-gradient  me- 
thods can be used if a reduction of the comput ing  time is 
desired. 

Output  specifications. The constants  used in setting up 
the initial fields as well as the time step and the space 
dimensions are printed by the main p rogram FESW. 

The initial height field and velocity fields are printed 
out  in subroutine I N C O N D .  

COMPUTER I M P L E M E N T A T I O N  

Descript ion o f  main program 

M a i n  program F E S W .  The main p rogram F E S W  
reads the only data  card of the p rogram and after some 
preliminary calculations calls the subroutines N U M B E R ,  
C O R R E S ,  I N C O N D  and AREAA.  

These subroutines set up the tr iangular elements, 
number  the nodes, determine the non-zero entries of the 
global matrix, calculate the initial fields and finally 
calculate the derivatives of the shape functions. 

Next those of the element matrices which remain 
invariant  during the simulation period are calculated by 
calling subroutine ASSEM. After finding the boundary  
nodes the p rogram enters the main do-loop,  which is 
executed once for every new time step. In this loop the 
simulation time is adjusted and then the subroutines 
ASSEM and M A M U L T  set up and assemble the different 
global matrices. The global matrices are then added 
following equat ions (32), (36) and (38). 

Subroutine S O L V E R  is called upon  to solve the linear 
systems of equat ions thus obtained, first for the continui ty 
equat ion and then for the u and v m o m e n t u m  equations.  

The new field values are updated as soon as obtained,  
and used in solving the coupled shallow-water equat ions 
system. After a predetermined number  of time steps 
subroutine O U T  is called to print out  the height and 
velocity fields. Subroutine O U T  in turn calls the output  
subroutines L O O K  and M A P P A  to calculate and print- 
out  the total energy and the mean height invariants and to 

obtain a line printer plot of the height field contours.  

Inpu t  specifications. The input to the p rogram con- 
sists of only one data  card, as follows: C A R D  1: 
F O R M A T  (F5.0, 515) which contains the following six 
parameters:  

D T  the time step in seconds; 
N L I M I T  total number  of time steps; 
M F  a parameter  controll ing output  operat ions  of  

the program,  i.e. specifying that after M F  time 
steps subroutine O U T  is to be called; 

N O U T U  a parameter  taking the value 0 or any integer 
5 0 ;  IF  N O U T U  = 0, the U field is not  printed; 
IF  N O U T U 4 : 0 ,  the U field is printed by the 
subroutine O U T ;  

N O U T V  a parameter  taking the value 0 or  any integer 
4=0; IF  N O U T V  = 0, the V field is not  printed; 
IF  NOUTV4=0 ,  the V field is printed by 
subroutine O U T ;  

N P R I N T  a parameter  taking the value 0 or  any integer 
4=0; IF  N P R I N T 4 = 0 ,  the global nodal  num-  
bers of each element, the indices of  all non-  
zero entries of the global matrix as well as the 
coordinates  of all the nodes are printed in 
subroutine N U M B E R ;  IF  N P R I N T  = 0 ,  none  
of  the above-ment ioned items is printed. 

Example s  o f  output  

Examples of F E S W  output  are provided so as to 
demonst ra te  the different options of the program. The 
initial height field using a space resolution of A z = A y  
= 4 0 0  km is shown in Fig. 1, while Fig. 2 shows the height 
field contours  after two days of simulation using a time 
step of 1800 s, and Fig. 3 shows the height field contours  
for a ten-day long-term integration using the same time 
step and spatial resolution. 
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COMPUTER PROGRAM 

Copies of the program listing may be obtained from C. M. 
L. Publicat ions upon application. A small charge for 
duplicat ion and post and packing will be made. 
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