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A Galerkin finite-element model of the shallow-water equations on 
a limited domain is presented. 

The evolutionary equations of continuity and momentum are coupled 
at each time step using an extrapolated Crank-Nicolson method to 
quasilinearize the nonlinear advective terms. The coupling allows time 
steps to be used larger than those possible with an uncoupled model. 

A linear one-dimensional stability analysis of the finite-element model 
is presented. Three mass matrix schemes, the consistent mass (CM), the 
lumped mass (LM) and a generalized mixed mass (GMM) scheme were 
used for numerical tests and for comparing the accuracy of the finite- 
element model both against a refined mesh solution and a highly accurate 
nonlinear ADI finite difference model when the same test problem was 
solved. The accuracy of the GMM mass matrix scheme was found to be 
greater than that of both the LM and CM schemes. 

Integral invariants of the shallow-water equations conserved almost 
perfectly for long-term runs. Extensive comparisons with results of other 
investigators using two different initial conditions for the shallow-water 
equations showed the results with the GMM mass scheme to have fourth- 
order accuracy in both amplitude and phase. 

A compact storage scheme is provided in which advantage has been 
taken of the sparsity of the global matrices. 

I n t r o d u c t i o n  

The shallow-water equations are used when tidal effects 
and surface runoff are modelled;they can also be used in 
numerical weather prediction to study large-scale waves in 
the atmosphere and ocean. In this latter domain they are 
often called the barotropbic primitive equations and are 
frequently used to test new numerical schemes. 

Galerkin finite-element techniques have been applied 
to the shallow-water equations by many Writers (see refer- 
ences 1-13).  

llere we are concerned with the solution of tile evolu- 
tionary shallow-water equations for a limited-area domain 
on a fl-plane. 

A Galerkin finite-element method (FEM) is employed 
for the space discretization using three-noded triangular 
finite elements, while a time-extrapolated Crank-Nicolson 
numerical time integration scheme is employed to quasi- 
linearize the nonlinear advective terms. 

We here describe three finite element models differing 
in the treatment of  the mass matrix. Special consideration 
has been given to the accuracy of the various models, and 
their accuracy is compared with that of a highly accurate 
nonlinear ADI finite-difference method, as well as by 
integrating tile same models with double resolution in both 
space dimensions. 
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To obtain an estimate of tile behaviour of the numerical 
scheme a linear stability analysis is performed on a similar 
linearized model. 

Results of short-term and long-term numerical test 
calctflations on a rectangular domain using a regular grid 
are compared and discussed. 

Finally conclusions are drawn, based on numerical 
experience with this model, and suggestions made regarding 
areas for further research. 

Sha l low-wate r  equa t ions  

The primitive equations describing divergent barotropic 
motion in an incompressible inviscid fluid with a free 
surface are often called the shallow-water equations. 

Using a Cartesian coordinate system with the x-axis 
running from West to East and they-axis from South to 
North, the equations for the model can be written as 
follows: 
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Ot 
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- -  ÷ l l  
Ot 

Ou au 0¢ 
- - + v  - - +  - - - f v  =0 (la)  
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- - + v - - + - - + h t = 0  ( lb)  
ax ay ay 
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here L and D are tile dimensions of  a rectangular domain 
of area A = LD. 

Here tt and v are the velocity components in the x- and 
y-directions respectively; ~ = gh is the geopotential; h is 
the depth of the fluid; g is the acceleration of gravity; and 
f is the Coriolis parameter, required when we consider a 
fluid in a rotating frame of reference. 

The Coriolis term f is given by: 

o f  
f = / +  (3(y - D/2) 13 = - -  (2) 

0.), 
with f and  16 constants. 

B o u n d a r y  and  initial  cond i t i ons  

The solution of equations (1 a) to (1 c) requires a know- 
ledge of the corresponding boundary and initial conditions. 

Periodic boundary conditions are assumed in the 
x-direction, while in tile .),-direct ion the boundary con- 
dition is: 

v(x, 0, t) = v(x, o ,  t) = 0 (3) 

With these boundary conditions and with the initial 
condit ion: 

w(x,.),, O) = ~o(x,y) (4) 

where w is the vector function: 

w = @, v, ~) r (5) 

and ~p(x,y) is an initial c6ndition to be specified later, the 
total energy: 

L D 

E = f . /  +v2 + ½ ] ' (u 2 O) ~ d x d y  (6) 
I 

g 
0 0  

is independent of  time. 

Also the average value of the height, which is propor- 
tional to the total mass: 

L D 

0 0 

is independent of  time. 

(7) 

Tes t  p r o b l e m  

The test problem used here for determining the initial 
conditions is the initial height field condition No. I of 
Grammeltvedt} 4 viz.: 

h(x,y)  = I I  0 + H,  tanh (9(0/2_-y)~ 
2D I 

The initial velocity fields were derived from the initial 
height field using the geostroplfic relationship: 

u = - 03-~, v ( 9 )  

Tile constants used were: 

L = 4 4 0 0 k m  g = 1 0 m s  -2 

D = 6000 km Ito = 2000 m 
(lO) 

f = 1 0 - 4 S  - 1  H ! = 2 2 0 m  

16 = 1.5 x 10-1 i s - i ra  - l  1t 2 = 133m 

The space increments used were: 

Ax = Ay = 400kin (11) 

while the time increments varied between At = 900 s and 
At = 2700 s. 

Another initial height field condition, i.e. initial con- 
dition II of  Grammeltvedt 14 viz.: 

tanh(9(O/2-Y) / 
h (x , y )  = 1t o + Hi 2D ! 

+ H  2 sech2 ( ? ( D ~  - - y ) )  

x .7 sin + 0.6 sin (8b) 
.L 

was also experimented with. 
hfitial condition (I) initially has energy in wave number 

one in the x-direction, whereas initial condition (II) initially 
contains energy in wave numbers one and three in the 
x-direction. 

• Initial condition (II) was employed by Gerrity et aL 43 
with a fourth-order accurate space differencing scheme 
and by Cullen 6 with a finite element scheme and thus 
provides a basis for comparison. 

F o r m u l a t i o n  o f  f in i t e -e lement  m o d e l  

We approximate tile shallow-water equations model (equa- 
tions l a - l c )  by the Galerkin FEM. The rectangular domain 
is subdivided into triangular elements forming a regular 
grid. Linear piecewise polynomial interpolation fnnctions 
were employed to save computing time and also for the 
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sake of simplicity. Over a given triangular element, each 
variable was represented as a linear sum of  the interpolation 
functions, i.e.: 

3 
t,~= ~ ,i(t)vi (12) 

/=2  

where ui(t) represents the scalar nodal value of the variable 
tt at the n o d e / o f  the triangular element and v i is the basis 
fimction (interpolation function) which can be defined by 
the coordinates of the nodes. 

The advection terms in the continuity equation (I c) are 
usually integrated by parts (using Green's theorem) to shift 
from derivatives of tile variable to derivatives of the basis 
fimction. 

This permits the use of basis functions with lower-order 
interelement contimfity and often offers a convenient way 
of introducing the natural boundary conditions that must 
be satisfied on some portion of the boundary. 

This integration gives: 

"a,- # .,o 

I ° , 
+f((~Vv/)y 0 d x - ~  (~bv)' oV/'~w=0 (131 

where the notation: 

( f (x ,y ) ,  I~-) = ~ f ( x , y )  Vidxdy  

element 

= ( ( f ( x , y )  V i d x  dy (14) 

global 

defines the inner product when a function is nmltiplied by 
tile trial function. Taking in(o account the cyclic boundary 
conditions in the x-direction and the boundary condition 
on v, the component of velocity in they-direction, the 
second and fourth terms of equation (13) vanish. 

The final expression for the continuity equation is: 

Following the Galerkin FEM, the momentum equations 
(la) and (Ib) become: 

<°" + + (,°" 
\ 0 t '  \ ~x '  0-yy' 

- ( f v ,  V/) + , I = 0 ( 1 6 )  

, kay ,v) 

+(fit ,  V/)+ O(_~y,V~ = 0  (17) 

We assume that over an element the same basis functions 
V apply for the tt, v, unknowns, i.e.: 

3 
t, = Z t'i(t) Vi 

i=1 
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3 

v = Z vat) v~ (18/ 
i=l  

3 
= Z 0;(t)6 

] - I  

where tti(t), vi(t), el(t) are the time-dependent nodal 
values of the variables tt, v, ~ respectively. 

Upon substituting these expressions into equations (15) 
to (17) one obtains: 

¥ 

- VkVjVk , - -~  =0 (19) 

v/, V/ + ' kVk tg- - 'ax  

"t" kVkl l  i ~ y  , -- ( fUkVk ,  V/) 

(¢ O Vk 1I.), + k ax " = 0 (20) 

t ~  Vi, V~ + ~,~1"~ vj ° vi 
, 

(v V/) + kVk vi -~y, + (~t~vk vi> 

(~aVkv,  t + /~ V '  =0 (21) 

Time  in tegra t ion  

The time-extrapolated Crank-Nicolson method was used to 
integrate in time the system of ordinary differential equa- 
tions resulting from the application of the Galerkin FEM to 
the shallow-water equations model. 

In this method, previously used by Douglas and 
Dupont, is Wang et aL, 2 Neuman 16 and llinsman, 12 an 
average is taken at time levels N and N + 1 of the expressions 
involving space derivatives, while the nonlinear advective 
terms are quasilinearized by estimating them at time level 
N+ ½ using the following second-order approximation in 
time: 

1 N - - I  u N÷~I2 =u* = ~u N -  ~u +0(At 2) 

u N + i / 2  = V , = 3  N I N-- I  v - ~v +0(At 2) (22) 
q s N + l [ 2 = ~ . = 3  N 1 N- - !  ¢ -~q~ +0(At 2) 

The shallow-water equations system was coupled at every 
time step, i.e. the solution of  each equation after one 
iteration at a given time step was used to solve the other 
two equations for tile same iteration for tile same time step. 

It was found experimentally that coupling the equations 
makes it possible to extend the allowable time step, in 
contrast to an uncoupled system. 

The advantage of coupling the three equations at any 
one time step would be that the equations would be more 
accurate and consistent and larger time steps would be 
possible. 12 
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Upon introdncing time discretization into the continuity 
equation (19), which is the first to be solved at a given time 
step, one obtains: 

((~;, +, ,, - ~))v~, v,) 
OV/~÷ /dill+l , (~Vi~ 1 A t  [{¢}'+ ll,~. V]Vk , l ~ V k  

2 ~ /  V/ vk ' V / ~  

n *V, + = 0  At2 [l~l'ttk JVk'~X / TjVkl~ffk'  3y/J 

(23) 

By defining the matrices: 

and: 

r ~v~ " ov~ dA 

A 

(24) 

tile continuity equation can be written as: 

At K (¢" + l  

M ( ~ } ' + ' - ¢ 7 ) - T  , ~ + ~ 7 ) = 0  (25) 

Introducing time discretization in tile same way into tile 
momentum equations (20) and (21), one obtains: 

and: 

<(,,;' +, - , , ;  1~, v,.> +-~- Ox ' 

/ , ,+, , .  ovj v,) ( ov,~ }1 
+ V '/ 7" ~ ~ ' + 0~+~ o.~ , )5 

[( ) ( '2 At . * O V/ n * 
+ - -  u i u k v ~ -  , Vi + uj vi~Vk , I 

2 3x 

+ - - ,  Vi - - A t ( f v ~ V  k, I)~)= 0 (26) 
Ox 

+ \,,) , , ~ , ~ , v ,  + T '  ay .v~ 

" ' [ ( "  °" ) 
+ - -  v) u k Vk + " * 

+ ¢~-~f, ~ ÷~t(~,~+~Vk,~>=O (27) 

Using the matrix definitions: 

rr ovj 
x= = f f  "~v~v'aV" dA +j j~v~v'  ~ 

A A 

A 

P2 = - f  f fv~ Vk Vi dA 
A 

tile tt-momentum equation becomes: 

At 

M("7 +' -,,7) + 2  x2(,,7 +' +,4') 

At (/W) + 1 .n + - -  + K 21 ) + AtP2 = 0 (29) 2 ~--21 

where: 

21 = ~ VII- dA etc. (30) 

A 

while by defining: 

f f ' 
= ff,."*' ~OA+ ~v~--  oA K3 . U  'k Vk OX ~J' 

A A 

= c j a w~ 
K31 V,.dA (31) 

A 

P3 - f f : '  "+' -- i k Vk Vi d A 
A 

The v-momentum equation becomes: 

M(~7+'-~7) + ~'~(~i '+' +~7) 
At (,V n + 1 -n 

+ - -  + K 3J) + AtP3 = 0 (32) 2 v'31 

In order to implement boundary conditions in tile 
Galerkin FEM we have here adopted an approach suggested 
by Payne and Irons 18 and mentioned by Huebncr. 17 This 
approach consists of modifying the diagonal terms of the 
global matrix associated with the nodal variables by nmlti- 
plying them by a large number, say 1016 (chosen with a 
view to the significant number of  digits possible with the 
given computer and the size of the field variables), while 
the corresponding term in the right-hand vector R in the 
system of linear equations: 

KX = R (33) 

where K is the global matrix, is replaced by the specified 
boundary nodal variable nmltiplied by the same large 
factor times the corresponding diagonal term. This pro- 
cedure is repeated until all prescribed boundary nodal 
variables have been treated. 

After these modifications have been made, it is possible 
to proceed with the solution of the set of  equations, using 
the modified matrix K and tile modified vector R. 

For instance, if in tlle matrix K we wish to implement 
the boundary condition: 

Xr =/3~ 
Tlien tile modification is: 

~j~ k12 kiN- x l -  R1 - 
. x  

.. X2 R2 
• . 

~'rl kr2 krr 1016 krN Xr = flrkrrlO 16 
",, : : 

"x  • 
\ 

~gi kN2 kNN XN RN 

If the rth equation is then considered it can be observed 
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that the desired botmdary condition has been imposed as: 

k r l X l  + k r 2 x  I + . . .  + k r r l O l 6 x r  + . . .  + k r N X N  

= [Jrkrr lO  16 

i.e. 

Xr -~ ~r 

Since: 

k r i  ~ k r r  1016 i = 1 , 2  . . . . .  N i ~ r  

The global (N x N) coefficient matrix generated by the 
assembly process is very sparse, as the maximum number 
of triangles incident on any one point is six. Therefore each 
row in the global N x N matrix has at most seven entries 
and it is an advantage to store the global matrix in a com- 
pact manner to save fast-core storage. An efficient scheme 
was devised to compact the (N x N) matrix into an (N x 7) 
matrix (see also Hinsman 12 and Navou and Mfillerl9). 

The method adopted in this paper for solving the system 
of linear equations was the iterative one of Gauss-Seidel 
which has the virtue of simplicity and requires only 
diagonal dominance of  the coefficient matrix. 

Finite elelnent m e t h o d  with the CM, LM and GMM 
mass matr ix  schemes 

In the previous section we saw that the application of the 
Galerkin FEM to the shallow-water equations model reduced 
the problem to solving a set of matrix equations whose 
term involving derivatives of time is the mass matrix 211 
(equation (24)). 

Using linear basis functions over triangular elements 
and introducing the well known area coordinates 2° one 
can obtain exact integrations using the following formnla 
for area integralsZl: 

f f o  b c = a ! b l c !  L I L 2 L a d x d y  ( a + b + c + 2 ) !  (34) 

A 

The mass-element (3 x 3) matrix is then: 

A I "~ (35)  
Met = 12 - 

1 1 

where A is the area of the element triangle. 
The assembled mass matrix is called the consistent mass 

matrix 3L A lumped-mass element matrix MI. is ofie in 
which the mass of the elements is equally distributed at the 
three corner nodes. By lumping the element nlass matrix 
before assembling the elements, a diagonal global mass 
matrix ML is obtained. 

The convenience of employing a lumped-mass system 
is that ML is a diagonal matrix and its inverse is immediate. 
ls~lara 22 proposed a generalized mixed-mass (GMM) 
scheme for a second-order hyperbolic wave equation. 
He defines the GMM mass matrix as: 

i l l  a = Oet]l + (1 - -  Or) 111 L ( 3 6 )  

where wis a parameter such that: 

O < a ~ < l  

The GMM scheme includes the CM scheme (u = l) and the 
I_~1 scheme (a = 0). 

All three mass schemes were used in the numerical 
experiments in which tile accuracy of each scheme was 
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compared with that of a Ifiglfly accurate nonlinear ADI 
finite difference model due to Gustafsson 23 when the same 
test problem was solved, as well as by integrating the same 
models with double resohttion in both space dimensions. 

Lumped  mass matr ices  - convergence  and 
accuracy  cons idera t ions  

The use of lumped or diagonal mass matrices has been first 
adopted for its considerable computational convenience. 
Key and Beisinger, 44 ilinton et aL as among others have 
experimented with different lumping schemes, which often 
give improved results over those attainable with consistent 
mass matrix formulations. 42 Fried 37 and Fried and Malkus 39 
have shown such schemes for several finite elements and 
demonstrated not only that convergence order is maintained, 
but that the accuracy is often improved. 

An important theorem concerning the order of numerical 
integration which does not affect the convergence rate when 
using lumped mass matrices states that i fp  is the order of 
polynomials used in the shape flmctions and m the order 
of differentiation present in the variational functional, then 
any integration exact to the order of 2 ( p -  m) will not 
affect the rate of convergence. 

If thus an integration scheme which uses only nodal 
points for sampling is devised and which possesses the 
correct order of integration, then the lumping process will 
not affect the convergence rate. 

Fujii 31 as well as Oden and Fost 36 show that for non- 
linear hyperbolic equations the use of  the lumped mass 
fornmlation results, for regular space grids, in an increase 
of X/3 in the time-step allowed by stability criteria of 
Courant-Friedrichs-Levy (CFL), while the same rates of  
convergence for the consistent mass formulation are also 
obtained for the lumped mass formulation. Tong 33 has 
observed the added stability with lumping for hyperbolic 
problems. 

Mock 34 observed that in hyperbc~lic problems it is the 
direction rather than the magnitude of tile lumping per- 
turbation which is important and lumping is intimately 
related to the stability of the methods we construct, lie 
also showed that lumping the mass matrix is achieved by 
the addition of a differential operator which for smooth 
splines is dissipative and strongly enhances the stability 
properties of  the discretization scheme. This is retrieved 
by broadening the domain of dependence of the discrete 
solution, wlfich, in view of the Courant--Friedrichs-Lcvy 
criteria, is also in the direction of increasing the stability. 

The same approach was used by tloltz, a° Schreyer 35 
proposed a new approach to obtain consistent mass 
matrices through tile combined use of orthogonal base 
functions and a mixed variational fornmlation. 

Linear stabil i ty analysis 

In order to gain some insight into the behaviour of our 
finite-element numerical solution of the shallow-water 
equations model we shall examine the FEM discretized 
equations of a one-dimensional simple system with gravity 
w a v e s ,  i . e . :  

au au a~ 
i + u  - - + i = 0  
at 3x ax 

a~ aep au 
I + t i  - -  - - = 0  
/)t ~)x + q~ ax 

(37) 
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A linearized form of equations (37) obtained by applying 
a perturbation technique, is: 

au au a~ 
- - + U - - + - - = 0  
at 3x ax 

(38) 
a ~  art  _ au 
- - + U - - + ~ - - = 0  
~t Bx ax 

where Uis the constant basic flow speed and ~ tbe  mean 
geopotcntial. 

Using a regular one-dimensional finite-element grid in 
space, with linear basis functions, the expansions for ~ and 
u in terms of the basis functions can be made such that: 

11i 
u-~ Z uAt)VAx) 

i=l  
(39) 

M 

Z 
i=l 

where ui(t ) and ~/(t) are the approximations to tt and 
respectively at node /and  time t, and V/(x) is the basis 
function associated with node L 

The nodes are assumed to have been numbered con- 
secutively, with nod e / +  1 adjacent to node / in  the positive 
x-direction. Application of Galerkin's method to the 
system (38) by weighting with respect to the ith basis 
function, yields: 

+ v ,  + - -  d x = 0  
j = ] L d t  -~x qSui d x  

x (40) 

Mr[d,,/ dr/ dV ] 
~" L--tit ViVi + Vui - -  Vi + ~/ - -  Vi d x = 0  

i=l dx  dx 
x (41) 

Denoting the length of  each element by Ax, the various 
integrals are non-zero only f o r / =  i - I ,  i or i + 1, and 
integrating we obtain: 

I (  d~i-I  +4  d~bi+ d~5i+l) + U O i + ' - ~ i - I  

6 ~, dt dt dt 2Ax 

- - l l i +  1 - - l l i _  1 
+¢  =0  (42) 

2Ax 

1 (dtti_ 1 dtt i dtti+l/ u t t i + l - t t i ' _ l  
- -  + 4  - - +  + 
6 \ dt dt dt I 2Ax 

~ Z + l - - ~ i - - I  
+ - 0 (43) 

2Ax 

Introducing the extrapolated Crank-Nicolson time-differ- 
encing scheme while the time derivatives are finite-differ- 
enced over the time step At, we have (taking into account 
coupling between equations (42) and (43)): 

r,~n + 1 ,,.~11 t~ll + l ii ,4,11 + | ,471 -] 
1 | v , ' - l - v i - ~  +.4*z A t ~ i  +~'i+l - w i + l  
6 L At At 

J 
•/- r ~ n  + 1 __ An + 1 

W i l l  ~7+ 1 -- ~n-- 1] 

7 t 5G + 2g; j 
r ( 3 , , ' +  " - "  " " - '  1 l - u i  + 1 ) - ( 3 u i  _ 1 - u i -  a )'] = 0 (44) 

+ 7 [  2Ax 

n + i tl t l  + 1 Iz it ff 1 tl 

61 L lui-1 ~-tti-I ÷4t t i  At--ui ÷ Ui+l At-tti+l] 
II + 1 11 + | II l| 

U u l i + l  - - l l i - - I  + l l i ~ - l - - l l i - - I  ] + - -  

2 L 2Ax 2 7  J 
1 r"~n + 1 .all + i n n "1 

1~ 'i~1 - -Wi-- I  ~ i + l - - ~ i - - I  
-2 t 2 A x  4 . . . .  ] 0 (45) 

+ 
2Ax 

For u and ~ we take Fourier components: 

u = u ° exp(i~t  + ikx) (46) 

= G ° exp(icot + ikx)  (47) 

where u ° and G ° are the amplitudes; k = 2niL is tim wave 
number; L is the wave length; ~o = kc is the frequency and 
c is the phase speed. 

Inserting (46) and (47) into equations (44) and (45) 
(and using the notation exp i~ t  = X), one obtains: 

1 
- -  (X - 1) [ exp( - ikAx)  + 4 + exp(ikAx)] G ° 
6At 

U 
+ - -  (X + l)[exp(ikAx) - exp ( - ikAx) ]  ~o 

4Ax 

4Ax 

1 

6At 

- -  (3 - X-l)[exp(ikAx) - exp ( - ikAx) ]  u ° = 0 

(48) 

- -  (X - 1) [ exp( - ikAx)  + 4 + exp(ikAx)] u ° 

U 

4Ax 
- - ( X  + 1)[exp(ikAx) - exp( - ikAx) ]  u ° 

1 
+ 4Ax (X + l)[exp(ikAx) - exp ( - ikAx) ]  G ° = 0 

(49) 

Using basic trigonometric identities, equations (48) and 
(49) can be simplified to take the form: 

I 
- - ( X  - 1)[2 cos(kAx) + 4] G ° 
6At 

U 
+ (X+l)[2is inkAx]4)  ° 

4Ax 

+ [(3 - X  -1) 2i sinkAx] u ° = 0 (50) 
4Ax 

I 
- -  (X -- 1)[2 cos(kAx) + 4]u ° 
6At 

U 
+ (X + I)[2i s inkAx]u ° 

4Ax 

1 
+ (X + 1)[2i sinkAx] ~° = 0 (51) 

4Ax 

There are two equations in the two coefficients G ° and u O, 
which can be eliminated to obtain an expression for X 
which is the eigenvalue of the amplification matrix. Tile 
well known'Von Neumann necessary condition for stability 
states that for all wave numbers the eigenvalues Xi of  the 
amplification matrix must satisfy: 

IXzl ~< I + 0(At) 
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By equating the deternfinant o f  the two equations to 
zero, i.e.: 

(X  - l ) ( c o s ( k A x )  + 2) 2--~X (3 -- X - I )  i s i n k A x  

U 
+ - -  ( X + l )  i s i n k k x  

2 a x  
= 0  

1 I 
~.v ( X + 1 ) i s inkAx 3At (x  -- 1 ) (cos (kZXx) + 2) 

U 
+ 2Ax(X + 1)i s inkAx 

(52 

a cmnplex cubic equation for 2, -- the eigenvalues of  the 
amplification matrix - is obtained as follows: 

3[4AxZ 
x [ 9 - ~ ?  (cos(~:ax) + 2) s - u s siuS~:zXx 

4Ax )] 
+ i U (coskAx sinkAx + 2 s i n k A x  

3~ t  

- -8Ax 
+ X 2 [ 9--9--~7 z ( c o s ( k k x )  + 2) s 

-- 2U s sin2~:Ax + 3~s in2kAx]  
,.,I 

r 4Ax / 4Axs  (cos(kAx) + 2 )  2 - iU - -  
+ X [ 9At2 3,5t 

x (coskAx sin k A x  + 2 sinkAx) -- U s sdnSkAx 

+ 2~ sin2kAx] -- ~ sin2kAx = 0 (53) 
I I  

This equation was solved numerically for the roots 
using a computer subroutine (CO 2A DF OF NAG library, 
Vol. 1) and various values o f  the wavelength L ranging from 
100 km to 5000 kin. The time step employed was At = 
1800 s, while the constants U and ~ were: 

U = 3 0 m s  -2 ~ = 2 x l O a m 2 s  - s  (54) 

The space interval was Ax = 400 kin. The results are 
presented in Table  1. llere the solutions associated with 
X 1 and ~'2 are physical modes, while the solution associated 
with X 3 is a computational mode. 

The results suggest a numerical behaviour similar to that 
when the Adams-Bashfor th  time-differencing scheme is 
used, i.e.: 

U" +' = U ('') + A t ( }  f ( " )  _ ½ f ( , , - l ) )  (55) 

when the equation: 

dU 
- -  = f ( U ,  t )  ( 5 6 )  
dt 

is solved. If  we take f =  icoU, equation (56) describes the 
oscillation equation (see Mesinger and Arakawa s4) and its 
eigenvalues are: 

IX l l  = 1 +¼p4 + . . .  

IXzl = ½P + . . .  (57) 
o 

2rr 
p = ~oAt = k c A t  = i c a t  (58) 

L 

Except for wavelengths less than L = 600 kin, the scheme 
is stable. 

Simulation o f  shallow-water equations model: I. M. Navon 

A similar analysis was conducted for tile lumped-mass 
scheme. Tile equations for ¢o and t t  0 corresponding to 
equations (48) and (49) are: 

U 
(X - 1) ¢o + _ _  (X + 1) [exp( ikAx)  - e x p ( - i k A x ) ]  ¢ ° 

4Ax 

+ ~ (3 - k - l ) [ e x p ( i k A x )  - e x p ( - i k A x ) ] u  ° = 0 
4Ax 

(59) 

U 
( X -  l ) u  ° + (X + l)[exp(ikz~x - exp ( - - i kAx) ]u  ° 

4Ax 

1 
+ 4Ax  (X + 1)[exp( ikAx)  - e x p ( - i k A x ) ]  ~b ° = 0 

(60) 

The rest, ltiug complex cubic equation for X = exp(i~ot) is: 

1_ A t  s -- UZ s i n 2 k A x  + -  i U  s i n k A x  
A t  

+ X2[ -SAx2At 2 2U2 sin2kAx + 3~s in2kAx]  

[4Ax s 4Ax 
+ M-- - -v -  - U 2 sinSkzkv - I i U s inkAx 

!_ ,St" At 

+ 2~sin2kAx] -- ~s in2kAx = 0 (61) 

The results obtained for various wavelengths L when the 
same constants were used as for the consistent mass 
scheme linear analysis, and the same computer  subroutine 
was used to solve numerically for the roots o f  X, are sum- 
marized in Table 2. 

The results o f  a similar analysis o f  the generalized mixed 
mass scheme (equation (36)) with the same constants and 
a = 0.5 are summarized in Table 3. 

A c c u r a c y  tes t s  

Tile three mass matrix schemes CM, LM and GMM were 
used for comparing the accuracy o f  the Galerkin FEM with 
that o f  a highly accurate nonlinear ADI finite difference 
method due to Gustafsson. 23 

Table I Variation of eigenvalues of amplif ication matr ix as 
function of wavelength (L) for consistent mass method 

L (km) ~-z ~-2 ~-3 

100 1.156 1.066 0.1784 
200 1.085 1.030 0.1373 
300 1 . 0 1 9  1 . 0 0 6  0.06872 
400 1.006 1.002 0.03953 
500 1.002 1.001 0.02046 
600 1.001 1.000 0.01772 
700 1.001 1.000 0.01303 
800 1.000 1.000 0.009983 
900 1.000 1.000 0.007890 

1000 1.000 1.000 0.006392 
1200 1.000 1.000 0.004440 
1500 1.000 1.000 0.002842 
2000 1.000 1.000 0.001599 
3000 1.000 1.000 0.7106 x 10 -3 
4000 1.000 1.000 0.2997 x 10 -3 
5000 1.000 1.000 0.2558 x 10 -3 
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Table 2 Var iat ion of eigenvalues of ampl i f icat ion matr ix  as 
funct ion of  wavelength (L) for  lumped mass method 

L (km) h~ h= X 3 

100 1.0046 
200 1.0318 
300 1.0118 
400 1.0045 
500 1.0020 
600 1.0010 
700 1.0005 
800 1.0003 
900 1.0002 

1000 1.0001 
1200 1.0000 
1500 1.0000 
2000 1.0000 
3000 1.0000 
4000 1.0000 
5000 1.0000 

1.0013 
1.0098 
1.0034 
1 0013 
1 0005 
1 0003 
1 0001 
1 0000 
1 0 0 0 0  
1 0 0 0 0  
1 00O0  
1 0 0 0 0  
1 0000 
1 0000 
1.0000 
1.0000 

0.034722 
0.087540 
0.054936 
0.034722 
0.023413 
0~16715  
0.012484 

0.96601 x l 0  -= 
0.76878 x l 0  -2 
0,62590 x 10 -= 
0.43755 x l 0  -= 
0.28154 x 10 -5 
0.15903 x l 0  -2 
0.708926 x 10 -~ 
0.399186 x l 0  -~ 
0.27732 x l 0  -3 

Table 3 Var iat ion of eigenvalues of  ampl i f icat ion matr ix  as 
funct ion of  wavelength (L) for  GMM method 

L (kin) h I h: ~3 

100 1.1737 1.0827 0.18880 
200 1.4015 1.2654 0.25432 
300 1.1858 1.0846 0.19199 
400 1.0799 1.0281 0.13341 
500 1.0362 1.0112 0.09305 
600 1.0180 1.0053 0.06718 
700 1.0098 1.0028 0.05032 
800 1.0057 1.0016 0.03895 
900 1.0036 1.0010 0.03098 

1000 1.0022 1.0006 0.02520 
1200 1.0011 1.0003 0.01759 
1500 1.0004 1.0001 0.01130 
2000 1.0001 1.0000 0.6375 x l O  -2 
3000 1.0000 1.0000 0.2838 x 10 -5 
4000 1.0000 1.0000 0.1597 x lO -= 
5000 1.0000 1.0000 0.1109 x 10 -2 

ht order to obtain the difference between tile true 
solution and the approximate solution, it was assumed 
that the true solution of  the shallow-water equations 
model was represented by WQN3, where w is the vector 
equation given by equation (5) and QN3 is a quasi-Newton 
ntethod o f  solution for the nonlinear ADI finite-difference 
method.19, 23 

Representing the Galerkin FEM solution by It' G the 
error is given by: 

6G = WG - -  WQN3 

and the relative error by: 

IleGII/IIWQN311 

where the norm II [I is defined as follows. 
Define a llilbert space H by considering all vector 

functions satisfying: 

. %  = w/ , , v~  +k Vi,o = vi , ,vy  = 0 

The inner product o f  two vectors ~, ~ attd the nornt is 
defined by: 

N:: I Ny - 1 
aik~/k v Z'{ Z 7 

/ = i  ~ k = l  
1 T T ] 

+ ~(~/ot~io + ~my t~/Ny) 
J 

II~ll 2 = (m, m) 

(62) 

(63) 

(65) 

where: 

Nx Ax = L A~. A!' = D (66] 

and L and D are given by equation (10). 
Tile test problem o f  equation (8) was now solved, using 

the coupled Galerkin FEM with tile three different ntass- 
matrix schemes and with Ax = A1' = 400 km and a time- 
step At = 30 rain. The comparative results summarized in 
Table 4 were then obtained by employing the QN3 non- 
linear ADI Gustafsson method with identical data, and 
integrating for 2 days. 

It is evident front tile results that the run (LM) - i.e. 
that in which the masses were hnnped - is less accurate 
than the CM scheme. The accur."cy o f  tile generalized ntixed 
mass (GMM) scheme with a = 0.5 is, however, greater than 
that o f  both the LM and CM schentes. For tile sake of  
comparison, tile accuracy is also shown o f  the result 
obtained by using the nonlinear ADI finite-difference 
ntethod with one nonlinear iteration per time-step (QNEXI] 
and with the LU decontposition of  the Jacobian matrix J 
updated every 12 time-steps, z3,2s 

Another set of  accuracy tests was conducted by inte- 
grating the same finite element models with double resolu- 
tion in both space dintensions (Ax = Ay = 200 kin) and a 
time-step t = 15 rain, and assuming the refined grid FEM 
solution to be the true solution. Representing the coarse 
mesh Galerkin FEM solution by W c and the Galerkin FEM 
refined mesh solution by I1%c, the error is given by: 

e 2 c  = Wc - It~'.c (67) 

with the norm defined by equation (65). 
The comparative results summarized in Table 5 were 

then obtained after a 2 days' numerical integration. 

Accuracy merits of tile GMM scheme - tentative 
explanation 

Althou~t error analyses for th~ GMM method applied to 
hyperbolic partial differential equations exist 22,29,3° they 
are all o f  the form 

I l e r ro r l [  ~< C ( h  2 + A t  2 )  ( 6 8 )  

where Cis a constant independent o f h  and At, not known 
a priori ,  and do not directly suggest an explanation of  the 
fact that the GMM scheme is most accurate. 

Table 4 Error between approximate and true solut ion for  d i f ferent  
f in i te-element methods 

Method 
Relative error II EGII/II wQN311, t = 2 days, 
A t  = 1800S, resolution AX = Ay  = 400 km 

CM 4.5 x 10-4 
LM 5.2 x 10 -4 
GMM (~ =0.5)  1.1 x l 0  -4 
QNEX1 (M = 12) 4.1 x 10 -4 

Table 5 Error between approximate and true solution for  d i f ferent 
f in i te-element methods 

Method 

Relative error llEGrl/llWQN311 , t = 2 days, 
A t  = 900s, resolut ion of  f ine mesh 
Ax = A y = 2 0 0 k m  

CM 3.7 x 10 -4 
LM 4.6 x 10 -4 
GMM ((x = 0 .5)  0.8 x 10 -4 
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A tentative explanation is to be found in a survey paper 
by Morton. 4t Remarking about the significance of the role 
of  the mass matrix in assessment o f  accuracy, Morton 
points out that for regular linear elements, the coefficients 
of the mass matrix (-~., }, ~) correspond to an operator 
(1 + 8x2/6) acting on U i where: 

8x 2 U/= U/+ x - 2U/+ U/_ l (69) 

The operator (1 + 8x2/6) is often inverted by iteration, and 
gives a Numerov-type scheme which is fourth-order accurate 
in space. The approximation: 

1 8~\-1 

which is characteristic of  fourth-order compact difference 
schemes is equivalent to a 'half-lumped' mass matrix 
(Morton41). This connects the GMM mass scheme with 
the fourth-order compact implicit schemes 46'47 and 
explains its higher accuracy. 

It is worthwhile to note at this point that Istdhara 22,29,3° 
finds that the CM mass scheme gives the upper bound and 
the 1_~I mass scheme gives the lower bound for the exact 
values of  the solution. The numerical results obtained by 
Ishihara with a = 0.5 for the GMM scheme give approxima- 
tions located between the CM and LM scheme results. 
Donea et aL 38 solving an advection diffusion problem 
proposed a two-stage explicit technique Milch resembles 
the GMM scheme. In their approach a lumped mass matrix 
is used to derive a first approximation of  the time- 
derivatives: 

,q 
= _ - -  (71) 

Mu 

where f I  u is the lumped mass matrix and {F}are global 
load nodes accounting for convection, diffusion and 
boundary contributions. 

Then a second approximation is sought by using the 
consistent mass matrix Mii: 

#, - E 

('£i)2 - i~ i  (72) 
M;~ 

The final values of  the time derivatives are computed as 
a weighted average of  the above approximations: 

{;h} = 3' {~hl} + (1 - T) {2/'2} (73) 

Donea et aL 38 found by a one-dimensional analysis of  the 
numerical phase speeds and using numerical experimenta- 
tion, that the optimum value of 7 is 0.5. 

Resul t s  

Many tests were run with the three different FEM mass 
schemes and various time steps. A guideline for the success 
of  the model was the conservation of  the two integral 
invariants of the shallow-water equations model, viz. the 
total energy and the average height. 

We exl~ected an approximate linear stability criterion 
of  the form: 

At 
c - -  ~< 0.707 

Ax 

due to the Courant-Friedrichs-Levy (CFL) criterion, 

Simulation of  shallow-water equations model: L M. Navon 

where c is the phase speed of  the fastest gravity waves and 
Axx the minimum ~ x  in the finite-element grid: 

c = ~ =  V~"  102 ms -1 

and: 

Ax = 400 km 

the maximum allowable time step is 30 min. 
The coupled Galerkin FEM using the CM mass scheme 

and a time step of 40 min became unstable after 481l but 
when a time step of 35 min was used, yielded stable integra- 
tions for up to 5 days. 

Figure i shows the initial height field contours drawn 
at 50 m intervals for initial condition (I). 

Figures 2 - 4  show the height field after 2, 6 and I0 days 
of simulation respectively, using the CM mass scheme 
with a time-step of At = 2100 sec. 

The coupled Galerkin FEM using the LM scheme with 
a 50-min time step became unstable after 31 h but yielded 
stable long-term integrations when tile time step was 
reduced to 45 min. 

Figures 5 - 7  show the height field after 1.5, 3 and 5 
days of  simulation respectively, using file LM mass matrix 
scheme with initial condition (I) and a time step of t = 45 
min. The coupled Galerkin FEM with the GMM mass scheme 
gave long-term stable integrations only when a time step of 
30 min was employed. 

The height field after 2 and 5 days of  simulation (respec- 
tively) using the GMM mass matrix scheme is shown in 
Figltres 8 and 9 respectively. A time step of At = 30 mitt 
was used. 

A test was also conducted by running an uncoupled 
version of the Galerkin FEM. The uncoupled model re- 
mained stable with a 15-min time step, but became unstable 
after 2411 when a 20-rain time step was used. 

In all cases the onset of  instability was marked by a 
sudden increase in the total energy, and the solutions 'blew 
up' regardless of  the iteration technique. 

All the figures in this paper display isoline contour plots 
of  the height field, with a contour interval of  50 m. 

Another set of  numerical experiments was conducted, 
using this time the initial height field condition (II) of  
Grammeltvedt (equation (8b)) and only for the GMM mass 
scheme. 

f Z 

Figure I Ini t ia l  height f ield contours (every 50 m).  AX = Ay  = 
400 k in;  Hmean = 2000 m, Eto t = 6 .2504 x 102°, CM scheme 
init ial condi t ion (IC) 1 
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Figure 2 Height f ie ld contours af ter  2 days. A x  = A y  = 400 km;  
A t  = 1800 sec; Hmean = 1998.38 m; Eto t = 6 .2413 x 102°; 
CM scheme IC 1 

.18OO 

Sfmulat/on o f  shal/ow-water equat/ons model :  A M. Navon 

i i l I i 1 i i i 
Figure 5 Height f ield contours af ter 36 h. AX = A y  = 400 km; 
A t  = 2700 sec; Hmean = 1998.78 m; Eto t = 6 .2404 x 10=°; 
LM scheme; IC 1 

~,~1800J 
0 

I ~ 1  i I i 1 I I I l I i i I | 

Figure 3 Height f ield contours af ter 6 days. ~ x  = Ay  = 400 km;  
A t  = 1800 sec; Hrnea n = 1998.32 m; E to  t = 6 .2463 x 102°; 
CM scheme IC 1 

21OO, 

i i i I I I i ! i I i I i I 

Figure 6 Height f ie ld contours after 3 days. A x  = A y  = 400 km;  
A t  = 2700 sec; / /mean = 1998.35 m;  E to  t = 6 ,2416 x 102°; 
LM scheme; IC 1 

18OO 

~ 2 2 0 0  ~ 

i i i I I i i i I I i i i i i 

Figure 4 Height f ie ld contours af ter 10 days. A x  = A y  = 400 km;  
A t  = 1800 $ec; Hmean = 1999.05 m; Eto t = 6 .2529 x 102°; 
CM scheme; IC 1 

1 8 0 0  

I I i I I I I I I i i I | i 

Figure 7 Height f ield contours af ter 5 days. AX = A y  = 400 km;  
A t  = 2700 sec; Hmean = 2001.43 m; Eto t = 6 .2535 x 102°; 
LM scheme; IC 1 
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Figure 8 Height field contours after 2 days. Ax = ~y = 400 kin; 
At = 1800 sec; Hrnea n = 1998.15 m; Eto t = 6.2426 x 102°; 
GMM scheme; IC 1 

Simulat ion o f  shallow-water equations modeh I. M. Navon 

Figure 10 shows the initial height field contours drawn 
at 50 m intervals for initial condit ion (I1). 

We tlten compared our results with tire results o f  Gerri ty 
et aL 32 after 2 days, and also with tlte results obtained by 
Cullen. 6 Table 6 gives the extreme ampli tude values of  the 
height field in each trough and ridge at the midpoint  o f  the 
channel after 2 days for different methods,  including a 
fourth-order compact method due to Navon et aL 4s 

Table 7 gives the corresponding positions as a fraction 
o f  the distance along the channel o f  the corresponding 
extreme values of  trouglis and ridges for the different 
methods.  Figure 11 shows the height field after 2 days o f  
integration using the GMM nmss matr ix scheme in conjunc- 
tion with initial condit ion (II)  with a time step o f  At = 
1800 sec. The results obtained show that tire FEM inte- 
grations using the GMM mass matrix scheme match the 
Gerrity results with a spatial resohttion A x  = I00 km as far 
as the ampli tudes and the detailed positions of  the trouglts 
and ridges are concerned. 

A good correspondence with the Culleu 6 two-stage 
Galerkin FEM and the compact  fourth-order  ADI method 
is observed. 

Figure 9 Height field contours after 5 days. Ax = Ay = 400 km; 
At  = 1800 sec; Hmean = 1997.43 m; Ere t = 6.2375 x 10=°; 
GMM scheme; IC 1 

C o n c l u s i o i l s  

A method for solving tile nonlinear sltallow-water equations 
using finite elements has been applied to a limited-area 
domain.  

For the particular data used for comparison, it was 
experimentally found that the most accurate method was 
the coupled Galerkin FEM entploying a generalized mixed 
mass (GMM) for the time (mass) nmtrix.  

Table 6 Amplitudes (after 2 days) in decametres 

Ampli tude of  troughs and ridges 
Method in middle of channel 

FEM with 

GMM mass matrix scheme 
( A x = A y = 4 0 0 k m )  210 204 207 192 

Finite element (Ax = A y  = 
400 kin) using the two-stage 
Galerkin method (Cullin 6) 210 204 205 193 

Finite di f fe rence  (Ax  = 100 kin) 
(Gerr i tye ta l .  43) 208 204 206 192 

Compact fourth-order ADI 
method (Ax = A y = 2 0 0 k m )  
(NavonandRiphagen 46) 208 204 207 193 

Table 7 Phases after 2 clays 

Method Phases 

197 187 

197 186 

197 189 

198 189 

1800 

~ 2200. 

I I I I I I I I I I I I I I I I 

Figure 10 Initial height field contours (every 50m).  &x  = Ay =. 
400 kin; Hmean = 2 0 0 0 m ;  E to  t = 6.2613 x 10 =°. IC 2 

FEM with 

GMM mass matr ix scheme 
(Ax = AF = 400 km) 

Finite element (Ax = AV 
= 400 kin) using the 
two-stage Galerkin 
method (Cullen 6) 

Finite difference (Ax = 
&y = 100 kin) 
(Gerrity et aL 43) 

Compact fourth-order 
ADI method (Ax = Ay 
= 200 km) (Navon and 
Riphagen 46) 

0.221 0.410 0.500 0.689 0.812 0.986 

0.225 0.419 0.475 0.668 0.775 0.968 

0.235 0.399 0.499 0.730 0.857 1.000 

0.225 0.373 0.497 0.716 0.854 1.000 
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I I I I I I I I I l I I ~ I I 

Figure 11 Height f ield contours af ter  2 days. Ax  = A y  = 400 kin, 
A t  = 1800 sec. H mean = 1999.98 m;  Eto t = 6.2564 x 102°; 
GMM scheme; IC 2 

When the same Galerkin FEM was used with the I_~1 
scheme, the time step could be increased by damping the 
short gravity waves, and the procedure proved to be highly 
economic in computer time. No other numerical smoothing 
or damping was included in the model. 

When accuracy was tested by comparison with a higlfly 
accurate nonlinear ADI scheme, the viability o f  tlfis simple 
model  was demonstrated, a good degree o f  accuracy being 
achieved although simple linear basis functions were used 
on three noded triangles. The computer  time was further 
reduced by use o f  a compact storage scheme for sparse 
matrices. ~9 

The accuracy could be improved if the method suggested 
by Cullen 8 were employed, in finite-element approximation 
o f  the products.  

A final comment  by the author is that the coefficient a 
in the GMM scheme should be further optimized and its 
connection with rational Pad4 approximants further 
investigated. 27 
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