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Summary 
Bayliss and Isaacson (1975) method of modifying any given 
difference scheme so as to ensure total conservation of the 
appropriate physical invariants is shown to be equivalent to 
the constraint restoration method of Miele et al. (1968, 1969) 
subject to the requirement of least-square change of the state- 
vector coordinates. 

Both methods are applied to enforce conservation of total 
energy and potential enstrophy in global shallow-water 
equations models. Some algorithmic differences between the 
methods are discussed as well as some implications of a 
posteriori enforcement of conservation of integral invariants 
on the performance of meteorological numerical weather 
prediction (NWP) models and the internal energy 
distribution. 

1. Introduction 

The long-term solution of the partial differential 
equations governing numerical weather prediction 
and climate models necessitates to employ numer- 
ical methods maintaining the conservation of the 
integral invariants satisfied by the continuous 
equations in order to inhibit nonlinear instability. 
Two types of approaches have been put forward 
towards solving this problem. 

Arakawa (1966, 1970) and Arakawa and Lamb 
(1981) have developed a priori conserving dif- 
ference schemes for specific NWP models. These 

methods have to be modified and developed anew 
for other models. Another way of looking at the 
problem was discovered simultaneously by Sasaki 
(1975, 1976, 1977) and by Bayliss and Isaacson 
(1975). See also Issacson and Turkel (1976) and 
Isaacson (1977). They found that it was possible to 
modify a posteriori any given difference scheme, 
so as to ensure conservation of its appropriate 
integral invariants. The method of Sasaki is a 
variational one, while that of Bayliss and Isaacson 
consits in linearizing the conservative constraints 
about the predicted values by means of a gradient 
method for modifying the predicted values at each 
time-step of the numerical integration. 

The Bayliss-Isaacson method has been tested 
by Kalnay-Rivas etal. (1977) and Isaacson et al. 
(1979) while Navon (1981) tested both the varia- 
tional method of Sasaki and the Bayliss-Isaacson 
method in long-term integrations of the nonlinear 
shallow-water equations on a fl-plane limited-area 
domain. Navon and deVilliers (1983) proposed a 
new augmented Lagrangian method to e, nforce a 
posteriori conservation of integral invariants of 
the nonlinear shallow-water equations. Navon 
and deVilliers (1984, 1986) also tested a constraint 
restoration method due to Miele et al. (1969, 1971) 
and suggested to them by Prof. Angelo Miele 
(private communication). This method consists in 
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satisfying the requirement  that  the integral con- 
straints be restored with the least-square change in m.60 
the field variables. _ ~0.~s 

In a recent test of  the constraint  restorat ion ~x 10.3o 
method  (CRM) it was suggested by E. Kalnay 
(private communica t ion)  that  the the C R M  ~m.ls 
me thod  and the Bayliss-Issaacson me thod  are ~-~0.0o 
equivalent. "a 98s 

In the present  paper  we will prove the equiva- ~ 9.70 
lence between the two methods  while detailing o-z 

9.55 
some differences in their algori thmic imple- 
mentat ion.  9.a0 

2. The Bayliss-Isaaeson Method 

Bayliss and Isaacson (1975) presented a me thod  
making  it possible to modify  any given finite- 
difference scheme, so as to ensure the total con- 5.= 
servation of  the appropria te  physical quantities. In 
what  follows we shall describe the theoretical ~.1 
f ramework  of  the Bayliss-Isaacson conserving ;'5.0 
modif icat ion method.  

Assume we have an ini t ial-boundary value ,~ 4.9 
problem used for the partial  differential equat ion 
for the vector u: ~ 4.8 

ut = (u) (1)  

and that  the solution u to (1) satisfies certain K 
integral invariants (conservation-laws) 

gk (u) = 0, k = 1, 2 , . . . ,  K. (2) 

by discretizing the integral invariants and repre- 
senting the integrals as sums, we obtain then 
the approximat ing  integral invariants 

Gk [U,~j] = 0, k = 1, 2 , . . . ,  K, (3) 

where ~ is a net funct ion defined at the grid points 
(xi, v s, t,) and U (xi, Ys, t,) approximates  u (x;, yj, tn). 
At  time tn+ 1, the difference operator  solving for 
instance the shallow-water equat ions (i.e., solving 
for the vector u has the form: 

W(n + 1 ) =  C[W(n) ,  W ( n - - 1 ) ,  . . . ,  W(n- - s ) ]  
=- C W(n), (4) 

where W(n) is a net funct ion at t ime t,. 
W e  now wish to modify  the given difference 

scheme (4) in such a way as to produce  a net 
funct ion U(n + 1) that  will satisfy (3), the discrete 
approximat ion  of  the integral invariants (2). Tha t  

Time evolution 

2 4 6 8 10 12 1l, 16 18 20 22 24 
Time in hours 1x1011 

Fig. 1. Time variation of the potential enstrophy as function 
of its initial value without constraint restoration (continuous 
line) and with constraint restoration (quasi-constant spiky 
line) 
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Fig. 2. Time variation of the potential enstrophy as a function 
of its initial value without application of constraint resto- 
ration and with constraint restoration (quasi-constant spiky 
line) for NASA/GLA fourth-order two layer global shallow- 
water model 

is, a corrective net function V(n + 1) is to be found 
such that:  

U(n + 1) = CU(n) + V(n + 1), 

G [U(n+ 1)] = 0, k = 1, 2 , . . . , K  (5) 
min II V(n + 1)ql 

and such that  the no rm of the per turbat ion V(n 
+ 1) is as small as possible i.e. rain I1 V(n + 1)[q. 

The determinat ion of V(n + 1) is a calculus 
problem for finding a net function that  satisfies K 
simultaneous nonlinear  equations (5) and is of  
m i n i m u m  norm [Isaacson (1977)]. 

Bayliss and Isaacson (1975) propose to solve (5) 
by linearizing the discretized invariants Gk [ U  (n 
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+ 1)] about the predicted value CU(n). This can 
be written as: 

Gk[U(n + 1) = Gk[CU(n) + V(n + 1)] 

,~ Gk[CU(n)] + gradGk" V(n + 1) 

Gk 
p 

I v ( n  + 1) (6) = Gk[CU(n)] + OU(n + l) 

-~Lk(V( .  + l)) U(~ + l) = CU(~) 

c~ G~ 
Here grad G ~ -  is evaluated at 

a u(n + 1) 
U(n + 1) = C U(n) and the scalar product with 
V(n + 1) is taken, the resulting linear form L k 
is set equal to zero. Since any vector V has a 
unique representation in the form 

K 
V(n+ 1)=  ~ % g r a d G k + P  (7) 

kT=I 

where P is an arbitrary vector orthogonal to the K 
gradients, it follows that any solution of the K 
simultaneous linear equation (6) is also of that 
form. If the Grammian matrix (grad Gk" grad G~) is 
nonsingular, by substituting the expression (7) for 
V(n + 1) into (6), the K scalar coefficients % are 
determined by solving the K linear equations (6), 
i.e. 

Gk[CU(n)]+gadGk'(L ~,.grad G,) = 0, 
"=~  (8) 

k=l , . . . ,K .  
Here we have used the orthogonality conditions 

P. grad GI~ = 0 (9) 

k = I, 2 , . . . ,K .  

If the norm II g(n + 1)II is the Euclidean norm 
then the arbitrary vector P must be zero, i.e. 

P = 0 (10) 

provides the solution of minimum norm. If we deal 
with a single integral constraint (for instance the 
potential enstrophy constraint for the shallow- 
water equations) and assume the correction: 

v ( ,  + 1) = (u', v', H') (1 l) 

is added to the predicted values of the velocity and 
height fields U, V, H, then using (5) and (8) we get 

(OG ~G 0 ) (12) 
(g',v',g')=c~ ~U'(?V' ~ o,P,R 

+ f a G \  , 

,H 

= o ( u ,  F0, E )  - -  G (U, V , ~  (13) 

Using (12) and (13) in conjunction with (8) we 
find that c~ can now be determined as: 

O(Uo, I/o, Ho) - -a (u ,  V,~9 
= , (14) 

0G 2+ c~G2+ c~G2 

au Vr 

Here G(U, V,H) denotes a consistent approxi- 
mation to the potential enstrophy and 
G (V0, V0, H0) is the initial (time t = 0) potential 
enstrophy. 

3. The Constraint Restoration Method ,(CRM) 

Angelo Miele, Heideman, and Damoulakis (1968, 
1969) proposed a constraint restoration method 
based on a least-square change of the coordinates 
in the state-vector. 

Their method starts by assuming that the 
vector x 

x = (u~ ' . . .  U;~u, ~, Vl-]n... V;~N~, hi'~'.., h ) ~ )  r (15) 

at time n A t, is in the vicinity of the optimal point 
x* which satisfies exactly the discrete K equality 
constraints 

r  = 0 (16) 

@(x)=  K<3NxN/=N.  (17) 

*K(x) 

where N is the number of components of the 
vector x. Suppose that a nominalpoint not consis- 
tent with (16) is available. Let ~ be a varied 
point related to the nominal point as follows: 

~:= x+ 5 x, (18) 

6 x being a perturbation of x about the', nominal 
point. By using quasi-linearization Eq. (16) is 
approximated by 

o(x) + A r ( x ) 6 x =  0 (19) 
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where A (x) denotes the (N • K) matrix: 

7 0 ~  

0xl  

00)1 

A (x) = 0 x2 

0 x u 

0 0)2 (~ 0)K- 
xl 0 xl 

{~ 0)2 0 0) K 

(~ X 2 0 X 2 

002 0 0)K 

0 X N 0 X N 

(20) 

where thej-th column is the gradient of the integral 
constraint 0)j with respect to the vector x. 

Here, the superscript Tdenotes the transpose of 
a matrix. In order to prevent the perturbation 6 x 
from becoming too large, it is convenient to imbed 
Eq. (19) into the one-parameter family of 
equations: 

~0)(x) + A r ( x ) a x  = 0, (21) 

being a prescribed scaling factor in the range 

0 ~< ~ ~< 1. (22) 

If the state vector x is an approximation to the 
described solution, we wish to restore the K 
constraints (16) while causing the least change in 
the components of vector x. Therefore, we seek the 
minimum of the function 

J = 1/2 ~)xT(~x, (23) 

subject to the linearized constraint (19). By using 
standard methods of the theory of maxima and 
minima one can show that the fundamental func- 
tion of this problem is given by 

6 x + [-0) (x) + (x) x] (24) x T 6 ) f  A T 6 

where ,~ is the K component of the undetermined 
Lagrange multiplier vector 

22 
~, = (25) 

The optimum change 6 x is obtained when the 
gradient of the scalar function Fwith respect to the 
vector 6 x vanishes i.e. when 

6 x = - -  A (x) ~, (26) 

(see also Appendix). 

By using Eqs. (26) and (21) we obtain an explicit 
expression for the Lagrange multiplier vector of 
the form: 

~ 0) ( x ) - -  B (x) ;. = 0 (27) 

where B (x) denotes the K • K matrix 

B(x)  = A r ( x ) A  (x). (28) 

Eq. (27) is linear in 2 and admits the solution 

= 0~ B -1 (x) 0) (x). (29) 

When x is a large vector (typically for a numerical 
weather prediction model 3NxNy > 104) and K 
is the number of the constraints (for the shallow- 
water equations K = 3) we can easily calculate the 
vector of Lagrange multipliers. 

From (29) and (26) we conclude that the 
optimum restoration correction is given by 

a x = - -  A (x)  6 -1 (x)  0) (x) .  (30)  

If we define a scalar performance index 

P = 0)r(x) 0) (x), (31) 

Clearly if P = 0, the vector x satisfies the discrete 
equality constraints ~b(x) = 0 and P >  0 
otherwise. The first variation of the performance 
index is given by 

6 P  = - - 2 0 ) r ( x ) A T ( x ) 6 x  (32) 

Using Eq. (21), then Eq. (32) reduces to: 

cSP = - - 2  ~ 0)r(x) 0) (x) = --20~P (33) 

Since P > 0, Eq. (33) shows that for ~ > 0 the first 
variation of the performance index is negative, 
and hence for small enough ~ the decrease of the 
performance index is guaranteed. For a single 
constraint (say again potential enstrophy) and 

= 1, Eq. (21) reduces to 

00) 6u 00) 6 00) 
0)+-~u-u + 0v v+-~h-CSh=0 (34) 

00) 00) 00) 
in which 0), 0 u '  • v' 0 h are computed at the 

nominal point. 
The function J of (23) is: 

J = v2 [(a u) 2 + (a v) 2 + (a h) 2] (35) 
subject to the linearized constraint (34). The 
fundamental function of this problem is given by: 

1 F = ~ [(6 u) 2 + (~5 v) 2 + (6 h) 2] + 

[ (  00) au ~ ~ a )1 +• 0)+~-u-u" + Ov + - ~ - .  h (36) 
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where 2 is an undetermined constant Lagrange 
multiplier. Optimum values of 6 u, 6 v, 6 h satisfy 
the relations: 

0 F  ~F 0 F  
- 0 ,  - - - 0 ,  - 0  (37) 

(a .) 0 (a v) (6 h) 
whose explicit form is the following: 

~q) 0 ~  0q~ 
6 u = - - X u ,  6 v = - - Z ~ , 0 h = - - X ~ -  (38) 

From (38) and (34), the Lagrange multiplier is 
found to be 

q5 

+ t F )  + t F )  
For a given constraint G 

(P = G, - -  G0 = G (fi, ~, h) - -  G (u0, v0, h0) (40) 

i,e. (39) has the form 

G (i, ~, h ) - -  G (u0, v0, h0) 
~t = (41) 

U. +77 +ah 

o r  

A ~  (x) Ak (x))ok = ~ (X) = Gk [C U(n)] (43) 

where 
k 

Ark (X) Ak (x) 2k = V - -  grad Gk" ~ (~ grad Gk) 

(44) 

Finally the determination of the ek or tihe 2k gives 
the same functional terms according to Eq. (41) 
and (14), respectively. See additional proof of 
equivalence due to Prof. Isaacson (personal com- 
munication) in Appendix A. 

5. Algorithmic Implementations of the Bayliss- 
Isaacson and CRM Methods 

5.1. The Bayliss~Isaacson Method 

As in Navon (1981) one obtains first the discrete 
finite-difference approximation of the integral 
invariant G~ (say for instance the potential en- 
strophy in a shallow-water equations method). 
The stages of the numerical algorithm implement- 
ing the Bayliss-Isaacson method are: 

4. Equivalence of the Bayfiss-Isaacson and CRM 
Methods 

In order to prove equivalence between the two 
methods we start by looking at the premises and 
assumptions adopted by both methods. Both the 
Bayliss-Isaacson and the CRM methods wish to 
satisfy the discretized constraints while minimiz- 
ing the norm of the corrective perturbation. The 
quasilinearization of Eq. (16) gives Eq. (19) for the 
CRM which is equivalent to Eq. (16) for the 
Bayliss-Isaacson method which is also based on a 
linearization of the discretized constraints 
Gk(v(n + 1)) about the predicted value C U (n). 

If we now identify the coefficients e~ in Eq. (8) of 
the CRM method with the Lagrange multipliers 2k 
of the Lagrange multiplier vector ~ of Eq. (27) for 
the CRM method we can see that Eq. (27) for the 
CRM method is identical to Eq. (8) for the Bayliss- 
Isaacson method (with c~ = 1). Also Eq. (8) for the 
Bayliss-Isaacson method and Eq. (29) of the CRM 
give the same expression for either c~ r or the K 
components of the vector 2 accordingly. This can 
be seen by taking c~ = 1 in Eq. (29) and then 
componentwise we have: 

2k = [ A r  ( x )Ak (x ) ] - '@(x )  (42) 

(i) Calculate 

~G c?G 0G 

ui/ ~ vii' Q h~j 

(ii) Calculate e following Eq. (14). 
(iii) Calculate the corrections to the predicted 

t ! t velocity and height fields, u m v•, h~j using 

~?G' 0G' 
u~j ~ uu vg ~ vu 

oo'  (45) 
t _ _ ,  

h U = c~ 0 hi1 

(iv) Calculate the new potential enstrophy (say) 
using the corrected fields i.e. 

G' (~ + u', ~ + v', h + h') (46) 

should satisfay up to truncation-error accuracy 
the constraint 

G' (~ + u', ~ + v', h + h') = G (u0, v0, h0) (47) 

(v) Use the new corrected fields u* = ~ + u', v* 
= ~ + v', h * =  ~ + h' as starting values for the 
new time-step integration of the numerical pre- 
diction model. 
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5.2. The C R M  Method  

1. Assume the nominal  point  x given by pre- 
diction at time t,,. 

2. At  the nomina l  point  compute  the constraint  
vector r the gradient-matrix A with Eq. (20) and 
the (K x K) matr ix B = A t ( x ) A  (x) with Eq. (28) 
as well as the performance index P [Eq. (31)]. 

3. Assume a restorat ion step-size 0~ = 1 and 
determine 6 x = k x, the corrective net funct ion 
using Eq. (30). 

4. Compu te  the varied point  2 

,~ = x + k x (48) 

5. At  the varied point  compute  the performance 
index/~. I f /~  < P the first i teration is completed 
and the scaling factor ~ = 1 is acceptable. 
Otherwise, if i f >  P Miele etal.  (1968, 1969) 
propose a bisection process i.e. c~ is bisected several 

1 
times c~ = ~ until  the cond i t i on /~  < P is met,  a 

fact guaranteed by the descent property.  
6. After a value o f ,  in the range 0 ~<, ~< 1 has 

been found such that  ff < P the first i teration is 
completed.  The new point  �9 = x + A x is used as a 
nomina l  point  for a second iteration and the 
procedure  repeated until  a desired degree of  
accuracy is at tained i.e. until  

P ~< e (49) 

where e is a small number  dictated by machine 
accuracy and t runcat ion error of  the difference 
scheme employed.  

5.3. Application o f  the C R M  Method  for  Enforcing 
Integral Invariants Conservation fo r  the Shallow- 
Water Equations 

We shall use the C R M  to enforce conservat ion of  
total-mass, total energy and potential  enst rophy 
for the shallow-water equat ions on limited-area 
domain  on a fl-plane. In this case the vector x is: 

X = (U~I. . . ,  UUxUy Vll...n VNxUy hll . . .n hNxuy T (50) 

3-component  equality con- while O(x) is the 
straints vector:  

= 

~3 

iW--Ho 
Z ~ - - Z o  
E --Eo 

(51) 

where 

1 
r 1 7 6 1 7 6  

A x A  ys.,S~ 1 
(~2 = z n - -  z ~  --  -2- V ~ja ~ 

I n  __ l~n 
vi+ ~,1 i ~,i__ (52) 

2 A x  

- -  u f qj 
z,j+ 1 i,j--1 2 _ _  

+ 
2 k y  

Z o 

t~ 3 = E~ E o A x A y 
- 2 2 2  1 j 

vae+ g ea aa. 

Here IT', Z n, E ~ are the values of  the discrete 
integral invariants of  total mass, potential  en- 
s t rophy and total energy at time tn = n A t, while 
H ~ Z ~ and E ~ are the values of  the same integral 
invariants at the initial time t = 0. The next stage 
in the application of  the C R M  method  is the 
calculation of the (N x 3) gradient  matrix A (x) 
which corresponds to r x (x). I f  we denote 

F -  n n IVi+ 1/-- Vi--L/ 

U inj + l - -  uin, j__ 1 "7 

2-2; + 1 (53) 

and if we omit  the superscript n for simplicity sake, 
we obtain 

- 0  
0 uij 

~02  A x  
-~7--  5 (qi,j+,--qi, j--1) 

0@3 
- A x A y u ~ h  o. 

~? uis 

0@1 _ 0 
v~j 

~c~2 _ A y 
Ov O. 2 ( - - q i + l , j +  qi-l,j) 

# c~ 3 
- A x A y vii h o. (54) 

c3 vii 

- A x A y  ~ 3 @ 2 - - - A x A y q 2 . .  
0 h o. • hij 2 'J 

c3 r _ A x A y (u~ + v 2 + 2 gh~j) 
Oh o. 2 
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Having the matrix A (x) we can calculate the 3 x 3 
matrix B (x) 

B(x) = Ar(x)A (x) (55) 

where 

6. N u m e r i c a l  Resu l t s  

The Bayliss-Isaacson method has been applied by 
Kalnay (1976) and by Kalnay etal. (1977) to 
enforce potential enstrophy in the 4th order dry- 

B(x) = (56) 

((~r 2. 63r ~r ; 2, kohd' 2 2., 0h , 
{~ (I)1 (~ r ~F~ r 2 [(~ 1~2~ 2 [-(~ r 2- ] 

1 - - - ;  " " - -  + 
; E Ohij. Ohij ; ~ LSuij 8u~ + 8v U 8v U 8h~ 8kuJ 

8(~ 1 803. 
s , �9 ~j Oh 0 8hg 

I-8 02 8 03 

; LVj 

80I) 2 69(I)3 8 r  2 63r 
+ e 5  + or.  g_l 

[63r 2 ] 

+ L~ _l 

Assuming c~ = 1 we can then calculate the 
Lagrange multiplier vector (3 components) ,!, using 
Eq. (29) i.e. 

T(I ) --I ;~ = B ~1 (x)  r (x)  = (r  x) r (x)  (57) 

We then determine the restorative correction 
k x by calculating the 3 Nx Ny = N vector 6 x: 

6x=p - - - - -A(x)2  = - - q ) x ( x ) *  (58) 

6 x = p = (59) 

0 

0 

63r 
63hll 

8 r 63 r 
- -22  --23 

8///11 69UI1 
8 r 8 003 

- -22  --23 8 V. 8Vll 

63 r  63 r  
--22 ~hll --23 63hl l 

--21 

802 0r 
- -  )~ 0 2 2 63 blNxNy 63 blNxNy 

1~ (I)2 0 1~) 3 
o --22 a Vuxuy 23 8 Vuxxy 

23 8 hxxu, 22 8 h~/N " 8 h%.N~. 

adiabatic version of the GISS general circulation 
model. Navon (1981) applied the same method to 
enforce conservation of potential enstrophy in a 
limited area shallow-water equations model. 
Isaacson et al. (1979 a) and Isaacson et al. (1979 b) 
have implemented the same technique in terms of 
simultaneous conservation of integral constraints 
for the shallow-water equations over a sphere 
taking into account orography effects. 

Navon and deVilliers (1984, 1986) have im- 
plemented the CRM method for simultaneous 
conservation of the integral invariants of the 
shallow-water equations on both a limited area fi- 
plane domain as well as an hemispheric domain 
when using a Turkel-Zwas large-time-step explicit 
difference scheme. Fig. 1 depicts the effect of the 
CRM method on the conservation of potential 
enstrophy. The CRM method was applied here at 
those time-steps of the numerical integration 
where a constraint violation, defined in terms of a 
predetermined relative change i.e. of  the relation 

Z n - -  Z 0 

Z0 

< C~z (60) 

was detected. 
Fig. 2 shows the effect of applying the CRM 

method for enforcing conservation of potential 
enstrophy in the NASA/GLA model [see Takacs 
(1986)] which uses a Matsuno explicit time 
integration scheme and 4th order space- 
differencing. 
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7. Discussion of the Numerical Results 

While the CRM method restores conservation of 
potential enstrophy and total energy some open 
questions still remain. 

The first one is to what degree is this a posteriori 
restoration of integral invariants affecting the 
process of geostrophic adjustment of the shallow- 
water equations model? A more involved question 
related to the first is how are the a posteriori 
methods of.the constraint restoration type affect- 
ing the nonlinear enstrophy and energy transfers 
in the resolved spectrum. 

In other words, we know that a potential 
enstrophy conserving finite-difference model of 
the nonlinear shallow-water equations is charac- 
terized by an equipartition of enstrophy among 
higher wave numbers. In general an equipartition 
in an inviscid, truncated (discretized) flow would 
correspond to a cascade in the original continuous 
system (see Sadourny, 1975, 1980; Fairweather 
and Navon, 1980). One should also parameterize 
subgrid scales so that the enstrophy cascade and a 
different cascade towards the dissipation range 
should be conserved (Smagorinsky et al., 1965). 

Preliminary experiments (L. Takacs, private 
communication) show that while the restoration 
method successfully conserves total energy and 
potential enstrophy it introduces a distortion in 
the energy spectra transfers evidenced by an 
increase in eddy energy when one omits the 
Shapiro filtering and relies only on constraint 
restoration when integrating the 4th order A-grid 
(nonstaggered) NASA/GLA global shallow-water 
equations model with orography. The results of 
using an Arakawa conservative C-grid formula- 
tion are not being matched by the results on a A- 
grid with constraint-restoration. To understand 
this one should consider the effect of the A and C 
grids respectively on geostrophic adjustment using 
the transfer function approach (Schoenstadt, 
1977, 1980). Schemes using unstaggered grid 
points like the A-scheme have a tendency to be 
noisier and to produce solution separation- 
coupled with aliasing near the 2 A x resolution 
cutoff. 

The staggered-grid Scheme C not only has 
better phase propagation characteristics--but 
also tends to window out much of the high- 
frequency noise in the discretized model 
(Schoenstadt, 1980). Thus, the conservation of the 

3 integral invariants cannot affect all the degrees 
of freedom of the model which are depending on 
the full range of the discrete frequency and group 
velocity parameters. Group velocity is determin- 
ing the velocity at which energy in the different 
frequencies propagates. 

One should therefore not expect a posteriori 
enforcement of integral invariants conservation to 
have more effect than the particular grid point 
distribution, which controls a much larger number 
of degrees of freedom of the model. 

Further studies should concentrate on studying 
the effect of constraint restoration methods on the 
model energy and enstrophy spectra in a given 
spectral band as well as its effect on the geo- 
strophic adjustment process. Another application 
would be the use of constraint restoration 
methods in Arakawa C grids using the Arakawa- 
Lamb (1981) conserving scheme to correct for 
variations due to time-differencing. 

8. Conclusion 

The Bayliss-Isaacson (1975) method has been 
shown to be equivalent to the constraint 
restoration method of Miele et al. (1968, 1969). In 
its algorithmic implementation the CRM method 
corresponds to an iterated Bayliss-Isaacson 
method. As a matter of fact the Bayliss-Isaacson 
method itself can in some instances be iterated. 
Battifaranno (1984) has studied the problem of a 
conservative modification of upwind differencing 
for a scalar wave equation allowing him to use 
time-steps A t, larger than the CFL condition. If 
A t was larger than the CFL condition permitted, a 
constraint involving derivatives was imposed and 
the Bayliss-Isaacson method had to be iterated a 
number of times depending on how big A t was (E. 
Isaacson, personal communication). A similar 
situation arose in the application of the CRM 
method to a large-time step Turkel-Zwas Scheme 
(Navon and deVilliers, 1984) where we found the 
number of CRM iterations increasing when we 
used a time-step larger than allowed by the CFL 
condition. Both methods have successfully been 
tested for enforcing conservation of integral in- 
variants in limited-area and global shallow- 
water equations mO~dels. 
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Appendix 

Additional proof of equivalence between the Bayliss-Isaacson 
and the CRM methods (Isaacson). 

When minimizing �89 ~ x r ~ x  subject to constraints (16) 
then Lagrange multipliers appear in Eq. (24) which can be 
written as: 

rain [IA 6 x r 3 x  + 2To (x + cSx)] (A 1) 
6x,). 

Taking the minimum w.r.t, the Lagrange multipliers 
results in 

~ - [ ( A z ) ] = q ) z ( x + 6 x ) = 0  1 ~<I<~K (A2) 
O21 

and the minimum w.r.t. 6 x yields 

0 
- -  [ ( A ~ ) ]  = 

c? 3 x x 

=cSxK+ ~ )> (x+cSx) = 0  (A3) 
r=l 0~XK 

I <~ K <~ N 

Equation (A3) is approximated by expanding about 
3 x = 0 yielding: 

'r q 0 O r ~xll Oxl (x) [ 
x O(b~ 

6x21 + Z 2r (X) I = 0  (A4) 
,. ~ Ox2 

(~ XN [ al~r 0xs (x)[ 

If we identify the perturbation vector V(n + 1) with 
c~ x we find that Eq. (A 4) is the same as Eq. (7) with P = 0, if 
~r = - -2r  for 1 ~< r ~< K. This proves equivalence between 
the Bayliss-Isaacson and the C.R.M. method. 
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