
Parallelizable Preconditioned Conjugate Gradient
Methods for the Cray Y-MP and the TMC CM-2

William H. Holter
I. M. Navon

Thomas C. Oppe

Supercomputer Computations Research Institute
Florida State University

Tallahassee, FL 32306-4052

June 28, 2002

Submitted to International Journal of High Speed Computing

Abstract
This paper presents the results of applying a number of vectorizable and paral-

lelizable preconditioned conjugate gradient methods to the numerical solution of the
diffusion equation governing the flow of groundwater in a confined two-dimensional
rectangular aquifer. Four different sample problems are formulated having coefficients
(transmissivities) ranging from continuous and isotropic to sharply discontinuous and
anisotropic. When discretized using a second-order finite difference approximation, the
resulting linear systems have symmetric and positive-definite matrices. The precondi-
tioners applied to these problems include the Jacobi, line Jacobi, incomplete LU (ILU)
and modified incomplete LU (MILU) decompositions, symmetric Gauss-Seidel, least
squares polynomial, and a new alternating direction preconditioner. The suitability of
each of these preconditioning methods for the Y-MP and Connection Machine 2 (CM-
2) parallel computers is investigated. The iteration count and the timing are given
for each method and for several problem sizes. It is shown that the ILU and MILU
methods are effective on a single-processor Y-MP when vectorized using a wavefront
strategy. For the CM-2, the least squares polynomial and the alternating direction
preconditioners are the most effective of the methods used in the study.

1 Introduction

This paper provides a comparison of the performance characteristics of several preconditioned
conjugate gradient (PCG) methods as implemented on the Cray Y-MP and the Thinking

1



Machines Corporation CM-2. These methods are used for solving four example problems
arising from the modeling of groundwater flow via discretization of the 2-D diffusion equa-
tion. Varying properties of the groundwater flow model, such as isotropic vs. anisotropic
and continuous vs. discontinuous transmissivities, give rise to large sparse systems of linear
equations whose matrices can be very ill-conditioned.

For this study, traditional preconditioners that vectorize and parallelize well but have
poor convergence rates, including Jacobi, line Jacobi, least squares polynomial, and sym-
metric Gauss-Seidel with red-black ordering are implemented on both computers. Precondi-
tioning methods that parallelize poorly but have good convergence rates, such as ILU(k) and
MILU(k) with natural ordering, are implemented on the Y-MP employing various optimiza-
tion strategies. Finally, a new preconditioner resembling the Alternating Direction Implicit
(ADI) method is developed in order to achieve increased parallelism while maintaining the
good convergence rate enjoyed by the MILU preconditioner.

The paper is organized as follows. Section 2 contains a description of each of the four test
problems in terms of their respective diffusion equation parameters and boundary conditions;
Sections 3 and 4 contain a description of the PCG algorithms used in the study; Section 5
presents an evaluation of the numerical results; Section 6 presents some timing models for
the methods based upon the empirical data; and, lastly, Section 7 presents some concluding
remarks.

2 The Test Problems

The flow of groundwater in a confined aquifer may be described by the 2-D diffusion equation.
Assuming that the principal components of transmissivity lie along the Cartesian coordinate
axes, the equation may be written as:

s
∂u

∂t
=

∂

∂x

(
a
∂u

∂x

)
+

∂

∂y

(
b
∂u

∂y

)
+ f, (1)

where s is the storage coefficient of the porous media, u is the pressure head (height of
the water table) to be determined, a and b are (non-negative) transmissivities in the x
and y directions, respectively, and f is a source/sink term that takes into account recharg-
ing/discharging wells. Sources and sinks are approximated by delta functions with strengths
equal to their volumetric flux.

Each of the test problems is defined on the unit square whose sides are assigned appro-
priate boundary conditions. A steady-state solution is sought for each problem, in which
case Eq. (1) simplifies to:

− ∂

∂x

(
a
∂u

∂x

)
− ∂

∂y

(
b
∂u

∂y

)
= f. (2)

The boundary conditions considered are no-flow (homogeneous Neumann)

∂u

∂η
= 0,

2



where η is a unit vector normal to the boundary of the aquifer, and constant head (Dirichlet)

u = constant.

Discretizing on a uniform node-centered grid with distance between adjacent nodes ∆x =
∆y = h, Eq. (2) becomes:

−αi−1,jui−1,j − αi,jui+1,j − βi,j−1ui,j−1 − βi,jui,j+1 + σi,jui,j = h2fi,j = gi,j, (3)

where i = 1, 2, . . . , nx and j = 1, 2, . . . , ny; with nx and ny denoting, respectively, the number
of grid points in the x and y directions; and

αi,j = δ (ai,j ; ai+1,j)

βi,j = δ (bi,j ; bi,j+1)

δ(c; d) =

{
2cd/(c + d), the harmonic mean, if c + d �= 0
0 otherwise

(4)

σi,j =

{
αi−1,j + αi,j + βi,j−1 + βi,j if the sum �= 0
1 otherwise

The α and β coefficients, located halfway between nodes, are given respectively by the
harmonic means of the a and b coefficients at adjacent nodes in order to ensure continuity
of fluid flux. The definitions given in Eq. (4) permit the inclusion of totally impervious
regions in the sample problems to be considered. Also, to accommodate no-flow boundary
conditions, appropriate α or β coefficients adjacent to the boundary are set equal to zero;
this amounts to employing an approximation to the normal derivative that is of first order
in h.

The stencil for the 5-point operator, implicit in Eq. (3), is depicted in Figure 1. Note
that σi,j and gi,j are collocated with ui,j at (xi, yj).

For an arbitrary rectangular uniform grid, the resulting system of equations for the
pressure heads, u, may be written as

Au = b,

where A is a symmetric positive definite (SPD) matrix (or a symmetric positive semi-definite
(SPSD) matrix if no-flow boundaries are imposed everywhere), and the vector b is a function
of g and the boundary conditions. The matrix A has a pentadiagonal structure and is weakly
diagonally dominant [19].

The four problems considered in this paper are described below.

2.1 EXPNA

This problem has continuous and isotropic transmissivities, a and b, and fully Dirichlet
boundary conditions. The transmissivities are

a(x, y) = b(x, y) = 100(x + y).

3



�

�

xi

yj �

� � �

�

ui,j−1

ui−1,j ui,j ui+1,j

ui,j+1

−βi,j−1

−αi−1,j −αi,j

−βi,j

Figure 1: 5-Point Stencil

The forcing function f and the boundary conditions are chosen so that the analytic solution
to Eq. (2) is

u(x, y) = cos(4πx) cos(4πy).

2.2 EXPNC

This problem has continuous and anisotropic transmissivities, a and b, and fully Dirichlet
boundary conditions. The transmissivities are

a(x, y) = 100x,

b(x, y) = 100(1 − y).

The forcing function f and the boundary conditions are chosen so that the analytic solution
to Eq. (2) is the same as that given for EXPNA.

2.3 EXP10G

This problem has discontinuous and isotropic transmissivities, a and b, and fully Dirichlet
boundary conditions. The values of the transmissivities range from 0 (impervious) to 100, 000
(highly permeable) and are piecewise constant in certain subdomains as given in Figure 2. In
this figure, filled circles with negative g values indicate discharging wells and hollow circles
with positive g values indicate recharging wells.

2.4 EXP6G

This problem has discontinuous and anisotropic transmissivities, a and b, and mixed Neu-
mann and Dirichlet boundary conditions. The values of the transmissivities range from 0 to
100, 000 and are piecewise constant in certain subdomains as given in Figure 3. In this figure

4



a = b = 105

a = b = 100

a = b = 0

a = b = 0.1

u = 1

u = 1

u = −1 u = −1
��

g = +25

�g = −100

Figure 2: EXP10G

5



a = b = 0

a = 10

b = 100, 000

a = 100, 000

b = 10

a = b = 1000

δ = 0

u = 0

δ = 0 δ = 0

�g = +110, 000

�g = +35, 000

�

g = −100, 000

�

g = −50, 000

�g = −125, 000

Figure 3: EXP6G

δ = 0 indicates a no-flow boundary condition while u = 0 indicates a Dirichlet boundary
condition.

6



3 The PCG Method

Denote the linear system to be solved as

Au = b

where A is a symmetric and positive definite matrix. Let Q be a symmetric and positive
definite matrix, called the preconditioning matrix, such that

1. Q approximates A to a greater or lesser degree, and

2. the solution to Qδ = r given r is “easy” to compute.

The Preconditioned Conjugate Gradient (PCG) algorithm used in this study is given by:

For n = 0, 1, 2, . . .until convergence do

r(n) =

{
b − Au(0) n = 0
r(n−1) − αn−1z

(n−1) n ≥ 1

If ‖r(n)‖2/‖b‖2 < ζ , exit

δ(n) = Q−1r(n)

γn = 〈δ(n), r(n)〉
βn = γn/γn−1 (β0 = 0)

p(n) = δ(n) + βnp(n−1) (p(−1) = 0)

z(n) = Ap(n)

αn = γn/〈p(n), z(n)〉
u(n+1) = u(n) + αnp(n)

where r(n) are the residuals, δ(n) are the pseudo-residuals, p(n) are the direction vectors, u(n)

are the iterates, 〈·, ·〉 denotes the inner product, ‖ · ‖2 denotes the 2-norm, and ζ is the
convergence criterion. Note that the speed with which the algorithm converges is strongly
dependent on the choice of Q. In general, it is desirable that the condition number of Q−1A
be smaller than that of A.

Many components of the PCG algorithm can be computed with optimized assembly lan-
guage routines on both the Y-MP and the CM-2. For the Y-MP, the Basic Linear Algebra
Subprograms (BLAS)[13] routines sdot, snrm2, and saxpy are used to compute inner prod-
uct, 2-norm, and vector update operations, respectively. For the CM-2, the Connection
Machine Scientific Software Library (CMSSL) [3] routines

1. gbl gen inner product noadd,

2. gbl gen 2 norm, and

7



3. grid sparse matrix vector mult

are used to compute inner product, 2-norm, and matrix-vector product operations, respec-
tively.

The matrix A is symmetrically scaled to have a unit diagonal with the transformation(
D− 1

2 AD− 1
2

) (
D

1
2 u
)

=
(
D− 1

2 b
)
,

where D is the main diagonal of the unscaled matrix. In general, this transformation sim-
plifies coding and improves the condition of the matrix.

On the Y-MP, the east and north coefficients are stored by diagonals in one-dimensional
vectors. This allows the matrix-vector product z = Ap to be computed with long vector
operations. On the CM-2, the matrix coefficients are stored as two-dimensional arrays. Note
that even though the matrix A is symmetric, the west and south coefficients are stored on
the CM-2 to avoid additional data motion operations.

4 Preconditioning Techniques

Let the diagonally scaled matrix A be written as

A = I + E + N + W + S,

where the E, N , W , and S matrices contain the east, north, west, and south coefficients,
respectively. For the symmetric problems considered in this study, W = ET and S =
NT . The preconditioning methods used in the study are described below in terms of these
matrices.

4.1 Jacobi

For this method, Q is the main diagonal of A. For the scaled matrix, the main diagonal is
I, and thus the preconditioning step is

δ = Q−1r = r.

This operation is trivially vectorizable and parallelizable on both the Y-MP and CM-2. This
method can be considered as unpreconditioned conjugate gradient on the scaled system.

4.2 Line Jacobi

For this method, Q = T , where T is a tridiagonal matrix formed from A. We consider two
cases:

line Jacobi, x direction: In this case, T = I + W + E, so that T is formed from the east
and west coefficients. Note that T is composed of ny independent tridiagonal systems
of length nx.

8



line Jacobi, y direction: In this case, T = I + N + S, so that T is formed from the north
and south coefficients. Note that T is composed of nx independent tridiagonal systems
of length ny.

The line Jacobi methods in the x direction and in the y direction are implemented on
both machines. In either case, the preconditioning step,

δ = T−1r,

involves solving independent tridiagonal systems of equal size. This operation vectorizes
easily on the Y-MP by operating on corresponding elements of all the systems at once. A
Fortran routine is used for solving independent tridiagonal systems on the Y-MP. For the
CM-2, specially optimized routines in the CMSSL (version 3.0) library for factoring and
solving independent tridiagonal systems are used. These routines use an algorithm that
combines substructuring with cyclic reduction [3, 11]. The tridiagonal factorization and
solution steps (CMSSL routines gen tridiag factor and gen tridiag solve factored,
respectively) are separated so that the factorization is done only once prior to initiation of
the PCG iterations.

4.3 Symmetric Gauss-Seidel (Red-Black Ordering)

If A is permuted to have a red-black structure, then A can be written as

A =

(
I FR

FB I

)
.

In this case, the symmetric Gauss-Seidel (SGS) preconditioner is given by

Q =

(
I 0

FB I

)(
I FR

0 I

)
.

The preconditioning step δ = Q−1r is given by the two-step process

δB = rB − FBrR

δR = rR − FRδB

These operations vectorize and parallelize well. On the Y-MP, constant-stride vector op-
erations of length 1

2
n, where n is the system size, are used on the unpermuted matrix and

vectors. On the CM-2, the optimized CMSSL matrix-vector product routine is used in con-
junction with logical mask arrays to update the black points first, followed by an update of
the red points.

9



4.4 Incomplete LU Decomposition

The ILU method is very popular on scalar computers and has been studied extensively
[4, 5, 7, 8, 12, 14]. For this method, an incomplete LU decomposition of A is used for Q.
Thus,

Q = (M + L) M−1 (M + U) ,

where M , L, and U are diagonal, strictly lower triangular, and strictly upper triangular
matrices, respectively. The elements of M are the pivots of the factorization. For the
unmodified ILU method, M , L, and U are chosen so that

Qi,j = Ai,j (5)

if i = j, Li,j �= 0, or Ui,j �= 0. For the modified ILU method (denoted MILU), M , L, and U
are chosen so that Eq. (5) is satisfied if Li,j �= 0 or Ui,j �= 0, and, in addition, Q−A has zero
row sums.

Often, L and U are chosen so that I + L + U has the same nonzero element structure
as A. This is denoted an ILU(0) (or MILU(0)) incomplete factorization since no fill-in of
nonzero elements is allowed. If fill-in is allowed so that I + L + U contains more nonzeros
than A, an ILU(k) (or MILU(k)) factorization results, where k ≥ 1 describes the level of
fill-in. Typically, Q more closely approximates A with increasing values of k but also has
greater storage costs.

Note that
Q =

(
I + L̃

)
M
(
I + Ũ

)
,

where L̃ = LM−1 and Ũ = M−1U . The solution to Qδ = r is thus effected using a three-step
procedure:

1. solve (I + L̃)x = r for x (the forward solution),

2. solve My = x for y (the diagonal solution), and

3. solve (I + Ũ)δ = y for δ (the backward solution).

This study investigates the use of the ILU and MILU methods for various levels of fill-in
under the natural ordering of the unknowns and considers various techniques for vectorizing
the forward and backward solution steps on the Y-MP. The ILU and MILU methods are not
competitive on the CM-2 due to the recursiveness of these operations.

Incomplete LU factorizations with various levels of fill-in are applied with the unknowns
in the natural ordering. The factorizations used are unmodified incomplete LU decompo-
sition, ILU(k), and modified incomplete LU decomposition, MILU(k), where k = 0, 1, 2, 3
refers to the level of fill-in. The fill-in stencils for these factorizations are given in Figures 4–7.

Many efforts have been made to vectorize the ILU and MILU preconditioners using
natural ordering [1, 2, 6, 16, 17, 18]. For the Y-MP, two approaches are tried for optimizing
the forward and backward solution steps.

10



S

W C E

N

Figure 4: ILU(0) fill-in pattern

S SE

W C E

NW N

Figure 5: ILU(1) fill-in pattern

S SE SEE

W C E

NWW NW N

Figure 6: ILU(2) fill-in pattern

S SE SEE SEEE

WW W C E EE

NWWW NWW NW N

Figure 7: ILU(3) fill-in pattern

11



Line-Oriented: With this approach, described in [6], each line of nodes is updated one at a
time. There is an inherent recursion between the nodes of a single line, which is a first
order linear recursion for the ILU(0), ILU(1), and ILU(2) patterns and a second order
linear recursion for the ILU(3) pattern. The Cray Assembly Language (CAL) routines
folrp and solr3 are used to implement the first and second order linear recursions,
respectively.

Computational Wavefronts: In this approach, described in [1, 2], the nodes are grouped
into computational wavefronts in which all nodes belonging to the same wavefront can
be updated simultaneously. For the ILU(0) pattern, the computational wavefronts are
the grid diagonals running from northwest to southeast. Thus

Wk = {ui,j|i + j − 1 = k} , k = 1, 2, . . . , nx + ny − 1

is the k-th wavefront, all of whose elements can be updated once the elements in
Wk−1 have been updated. The wavefronts for an (M)ILU(0) forward solve with arrows
indicating dependencies are given in Figure 8. Unfortunately, the vector lengths are
much shorter than the problem size, and increasing the level of fill-in results in even
smaller vector lengths. For the ILU(1) pattern, the computational wavefronts are

Wk = {ui,j|i + 2j − 2 = k} , k = 1, 2, . . . , nx + 2ny − 2,

all of whose elements can be updated once the elements in Wk−1 and Wk−2 have been
updated. The wavefronts for an (M)ILU(1) forward solve with arrows indicating de-
pendencies are given in Figure 9.

4.5 Symmetric Alternating Direction Implicit (SADI)

Let
A = D + E + N + W + S,

where D, E, N , W , and S are the diagonal, east, north, west, and south coefficients,
respectively. Let

H = DH + E + W V = DV + N + S

for diagonal matrices DH and DV chosen so that D = DH + DV and H and V are positive
semi-definite. Thus, A = H + V , where H is tridiagonal, and V can be permuted to be
tridiagonal. Let Ω and Ω′ be diagonal matrices with positive elements, and define the four-
step basic iterative method:

(H + Ω) u(n+ 1
4
) = (−V + Ω) u(n) + b

(V + Ω′) u(n+ 1
2
) = (−H + Ω′) u(n+ 1

4
) + b

(V + Ω′) u(n+ 3
4
) = (−H + Ω′) u(n+ 1

2
) + b

(H + Ω) u(n+1) = (−V + Ω) u(n+ 3
4
) + b.

12



� � � �

� � � �

� � � �

� � � �

�
�

�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
��

�
�

�

W1

W2

W3

W4 W5 W6 W7

�

�

�

�

�

�

Figure 8: ILU(0) Wavefronts for 5-Point Star

� � � �

� � � �

� � � �

� � � �

���

�����������

������������������

�������������������������

�������������������������

�������������������������

�������������������������

������������������

�����������

���

W1

W2

W3

W4

W5

W6

W7 W8 W9 W10

�

�

�

�
�

�
�

���

Figure 9: ILU(1) Wavefronts for 5-Point Star

13



This method can also be written as

u(n+ 1
2
) = G1u

(n) + k1

u(n+1) = G2u
(n+ 1

2
) + k2,

where Gi = I − Q−1
i A, ki = Q−1

i b for i = 1, 2, and

Q1 = (H + Ω) (Ω + Ω′)−1
(V + Ω′)

Q2 = (V + Ω′) (Ω + Ω′)−1
(H + Ω) .

The splitting matrix corresponding to this composite iterative method is given by

Q = Q1 (Q1 + Q2 − A)−1 Q2.

Note that if A is symmetric, Q2 = QT
1 so QT = Q. If Q is also SPD, conjugate gradient

acceleration can be applied to the basic iterative method.
We now consider the solution of Qδ = r required in the PCG algorithm. Note that

Q−1 = Q−1
2 (Q1 + Q2 − A) Q−1

1

= Q−1
2 + Q−1

1 − Q−1
2 AQ−1

1 .

Thus, an efficient way to evaluate δ = Q−1r is with the two-step process:

v = Q−1
1 r

δ = v + Q−1
2 (r − Av) .

This operation involves computing a matrix-vector product and solving four tridiagonal sys-
tems corresponding to H + Ω and V + Ω′. H + Ω is composed of multiple independent
tridiagonal subsystems of equal size corresponding to the horizontal grid lines. Similarly,
V + Ω′ is permutable to a tridiagonal system composed of multiple independent tridiagonal
subsystems of equal size corresponding to the vertical grid lines. On the Y-MP, these tridiag-
onal systems are solved in vector mode by treating corresponding elements of the tridiagonal
systems as vectors. On the CM-2, special CMSSL software for solving multiple independent
tridiagonal systems is used. On both computers, the tridiagonal systems are factored once
prior to iterating, while the tridiagonal solutions are computed for every iteration.

A crucial issue for this method is the selection of the diagonal matrices Ω and Ω′. Suppose
first that Ω = ωI and Ω′ = ω′I. Suppose also that the eigenvalues of H lie in the interval
[a, b], and the eigenvalues of V lie in the interval [α, β]. The optimal choice of the parameters
ω and ω′, in the sense that the spectral radius of the ADI iteration matrix is minimized [19],
is given by:

Case 1: H and V have the same range. If a = α and b = β, the optimal parameters are
given by

ω = ω′ =
√

ab. (6)

14



Problem nx a b α β
EXPNA 63 0.477313825e–3 0.999522686 0.477313825e–3 0.999522686

127 0.115313832e–3 0.999884686 0.115313832e–3 0.999884686
255 0.279965643e–4 0.999972003 0.279965643e–4 0.999972003

EXPNC 63 0.149084803e–3 1.96854925 0.149084803e–3 1.96854925
127 0.366570062e–4 1.98549814 0.366570062e–4 1.98549814
255 0.908774727e–5 1.99321588 0.908774727e–5 1.99321588

EXP10G 63 0.0 1.33206893 0.0 1.33206893
127 0.0 1.33299770 0.0 1.33299770
255 0.0 1.33324682 0.0 1.33324682

EXP6G 63 0.0 1.99959693 0.0 1.99894410
127 0.0 1.99971204 0.0 1.99938719
255 0.0 1.99976498 0.0 1.99960765

Table 1: H and V Eigenvalue Bounds

Case 2: H and V have different ranges. If a �= α or b �= β, the optimal parameters are
given by

ω =
−p + Rq

√
c

1 − Rs
√

c
ω′ =

p + Rq
√

c

1 + Rs
√

c
(7)

where

θ =
2(β − α)(b − a)

(a + α)(b + β)

c =
[
1 + θ +

√
θ(2 + θ)

]−1

Rs =
(β − α) − (b − a)

(b + β) − (a + α)c

Rq =
1

2
[(b + β) + (b − β)Rs]

p =
1

2
[(b − β) + (b + β)Rs]

The eigenvalue bounds of H and V for the four sample problems are given in Table 1.
Using these eigenvalue bounds, optimal values for ω and ω′ are computed using Eqs. (6) and
(7) for problems EXPNA and EXPNC. For EXPNC, the optimal values for ω and ω′ result
in a preconditioning matrix Q that is not positive definite. Thus, for problems EXPNC and
EXP10G, good values for ω and ω′ are found by experimentation. Good values for these
parameters could not be found for EXP6G. The values of ω and ω′ used in the numerical
experiments are given in Table 2.

15



Problem nx ω ω′

EXPNA 63 0.218422983e–1 0.218422983e–1
127 0.107378086e–1 0.107378086e–1
255 0.529110391e–2 0.529110391e–2

EXPNC 63 0.029 0.029
127 0.023 0.023
255 0.021 0.021

EXP10G 63 0.120 0.120
127 0.093 0.093
255 0.088 0.088

Table 2: ω and ω′ SADI Parameters

4.6 Least Squares Polynomial

For this method, the preconditioning matrix Q is such that

Q−1 = pn(A)

where pn is an n-th degree polynomial. The polynomials {pn} are to be chosen so that
Q−1A ≈ I, or, equivalently, that

I − Q−1A = I − pn(A)A

is small. Note that if λ is an eigenvalue of A, then qn+1(λ) is an eigenvalue of I − Q−1A,
where

qn+1(x) = 1 − xpn(x).

Since we wish these eigenvalues to be small, we can choose qn+1 to be small in a least squares
sense over an interval that includes the eigenvalues of A. Note that

qn+1(0) = 1.

Thus qn+1 is chosen so that ∫ M

m
[qn+1(x)]2 w(x) dx

is minimized, where the interval [m, M ] contains the spectrum of A and w is a positive
weighting function. Since A is positive definite, m = 0 can be chosen. For this study, the
weighting function

w(x) = xc(M − x)d

is used where c > −1 and d > −1 are chosen to emphasize portions of the spectrum of A.
Thus c = d = 0 results in a uniform weighting of the spectrum, while c = d = −1

2
results in

16



a greater weighting of the extremal eigenvalues than of the interior eigenvalues. For the four
test problems considered in this paper, the choice c = d = −1

2
results in a more effective

preconditioner than the choice c = d = 0.
With this choice of weighting function, it can be shown that the {pn} and {qn+1} poly-

nomials obey the recurrence relations

pn(x) = (−αnx + βn + 1) pn−1(x) − βnpn−2(x) + αn

qn+1(x) = (−αnx + βn + 1) qn(x) − βnqn−1(x),

where

αn =
(2n + c + d + 2)(2n + c + d + 3)

M(n + c + 2)(n + c + d + 2)

βn =
n(n + d)(2n + c + d + 3)

(n + c + 2)(n + c + d + 2)(2n + c + d + 1)
.

Since the unscaled matrix A is weakly diagonally dominant, it is known that λmax(A) < 2
for the diagonally scaled matrix A[19], so M = 2 can be chosen. Using these recurrence
relations, the coefficients of {pn} are calculated explicitly. The preconditioning step

δ = Q−1r = pn(A)r

is evaluated using Horner’s rule and repeated matrix-vector multiplication operations.

5 Performance Analysis and Observations

The PCG methods discussed in Section 4 were applied to the four test problems described
in Section 2. For all runs, the starting solution is u(0) = 0 and the stopping criterion is

‖r(n)‖2

‖b‖2

< 10−6.

A single processor of a Cray Y-MP with a clock cycle of 6 ns is used. The testing
programs are written in single precision Fortran 77 code with the exception of calls to the
BLAS routines saxpy, scopy, sdot, and snrm2 and calls to the SCILIB routines folrp and
solr3. Calls to second are used to measure CPU times. The operating system is UNICOS
7.0.2, and the Fortran compiler is CFT77 5.0.2.15. In order to minimize memory bank
conflicts for some methods, the mesh sizes used for the problems are slightly different than
for the CM-2: nx = ny = 63, nx = ny = 127, and nx = ny = 255.

One quadrant of a 64K CM-2 with a clock speed of 7 MHz is used for the runs. The CM-2
is equipped with Weitek double precision floating point processors. The testing programs are
written in double precision Fortran 90 code with the exception of calls to CMSSL routines

17



for performing inner products, 2-norm calculations, 5-point star matrix-vector products, and
tridiagonal factorizations and solutions. The operating system is CMSS 6.1.1, the Fortran
compiler is CMF 1.2 (slicewise), and the library is CMSSL 3.0. The mesh sizes used for the
problems are nx = ny = 64, nx = ny = 128, and nx = ny = 256. The timing commands used
to measure the CPU time are the following:

call cm timer clear (0)

call cm timer start (0)

code to be timed

call cm timer stop (0)

t tot = cm timer read elapsed (0)

t idle = cm timer read cm idle (0)

tim = t tot - t idle

The performance results are tabulated in Tables 8 through 31 in Appendix A. In these
tables, the following abbreviations are used:

Name Meaning
ITER number of PCG iterations required for convergence
TIMIT corresponding CPU time in seconds, excluding factorizations
TIMFAC factorization CPU time in seconds
κ (Q−1A) condition number of Q−1A
JACOBI Jacobi (Section 4.1)
LJACX line Jacobi, x direction (Section 4.2)
LJACY line Jacobi, y direction (Section 4.2)
SGS-RB symmetric Gauss-Seidel using red-black ordering (Section 4.3)
ILU(k) Incomplete LU decomposition, fill-in level k (Section 4.4)
MILU(k) Modified Incomplete LU decomposition, fill-in level k

(Section 4.4)
SADI Symmetric Alternating Direction Implicit (Section 4.5)
LSP(k) Least Squares Polynomial, degree k, weights c = d = −1

2

(Section 4.6)

5.1 Y-MP Results

Based on the results obtained on the Cray Y-MP, the following observations are noted:

1. The most effective methods for the problems with continuous coefficients (EXPNA and
EXPNC) are SADI and the wave version of MILU(1). The most effective methods for
the problems with discontinuous coefficients (EXP10G and EXP6G) are, respectively,
SADI and the wave version of ILU(k) with high values of k. MILU(k) cannot be used
for either problem since Q is not positive definite.

18



Problem 63 × 63 127 × 127 255 × 255
EXPNA SADI SADI MILU(1) (wave)
EXPNC SADI MILU(1) (wave) MILU(1) (wave)
EXP10G SADI SADI SADI
EXP6G ILU(2) (line) ILU(1) (wave) ILU(3) (wave)

Table 3: Best Methods on the Y-MP

2. For the ILU(k) and MILU(k) methods, the wave approach is faster than the line
approach except for the smallest problem size with high values of k.

3. The red-black method SGS-RB performs better than Jacobi by halving the number of
iterations and using long vector operations.

4. The least squares methods are more effective than the Jacobi method. Higher degree
polynomials are more effective than lower degree polynomials up to some optimal
degree.

5. For problem EXPNA, the SADI method performs very well with an iteration count
close to that of MILU(3). Using good values for the iteration parameters ω and ω′,
the number of iterations grows according to h− 1

2 as does MILU(k). For EXP6G, the
SADI method is not as effective since good values could not be found.

6. LJACX is faster than Jacobi for EXP6G since the number of iterations is greatly
reduced. For the remaining three problems, LJACX offers little improvement over
Jacobi. For all four problems, LJACY is not effective.

The best methods on the Y-MP are summarized in Table 3.

5.2 CM-2 Results

Similarly, the following observations are noted based on the results obtained on the CM-2:

1. The SADI method is the most effective method for the problems with continuous co-
efficients for the largest problem size. For the problems with discontinuous coefficients
or for small problem sizes, the least squares polynomial method is the most effective.
As noted previously, the ILU and MILU methods were not competitive on the CM-2
due to the recursiveness of the forward and backward solution steps.

2. The least squares methods are significantly faster than the Jacobi method, indicating
that the inner product calculations are expensive compared to computing matrix-vector
products. Higher degree polynomials are more effective than lower degree polynomials
up to some optimal degree.

19



Problem 64 × 64 128 × 128 256 × 256
EXPNA LSP(12) LSP(11) SADI
EXPNC LSP(11) LSP(12) SADI
EXP10G LSP(12) LSP(11) LSP(12)
EXP6G LSP(12) LSP(12) LSP(12)

Table 4: Best Methods on the CM-2

3. The line Jacobi method LJACX is effective for problem EXP6G. LJACY is generally
less effective than LJACX due to higher iteration counts or memory bank conflicts.

4. The red-black method SGS-RB performs better than the Jacobi method for small
problems but worse for large problems. The number of iterations is reduced by a
factor of two, but each iteration is almost twice as expensive as a Jacobi iteration.

The best methods on the CM-2 are summarized in Table 4.

6 Timing Relationships

In this section, empirical relationships derived from the data displayed in Tables 8 through 31
are presented which demonstrate, mathematically, the quantitative and qualitative behavior
of the various preconditioners as a function of problem definition, problem size (number of
unknowns) and the utilized computer (Y-MP and CM-2). In particular, the relationships are
presented for EXPNA, for which the coefficients are continuous and isotropic, and EXP6G,
for which the coefficients are sharply discontinuous and anisotropic. Not surprisingly, the
relationships differ rather dramatically for the three modes of comparison. The relationships
for EXPNC and EXP10G are not included since they differ in complexity somewhere between
the two extremes.

Apart from the least squares polynomial preconditioner (LSP), which is treated a bit
differently and discussed separately at the end of this section, approximate formulas relating
number of iterations (ITER) and computation time (TIMIT) to problem size have been
derived from the tabulated performance data assuming models of the form

ITER = c1h
−ξ1 and TIMIT = c2h

−ξ2

where c1, c2, ξ1, and ξ2 are constants to be determined. (Recall that h is the distance
between adjacent grid points and is equal to (nx + 1)−1 in the test problems.) Since the
factors contributing to the growth of TIMIT with problem size are of primary interest, the
two models are combined in the form

TIMIT = c(1/h)ξ+η

20



where now ξ is the growth factor related to number of iterations and η is the corresponding
factor related to computation time per iteration.

Plots of log(TIMIT) versus log(1/h) for the tabulated data indicate that linearity is ap-
proached asymptotically with increasing problem size (decreasing h). Also, the performance
characteristics of the CM-2 are such that the timings for the smallest size (64 × 64) do not
conform to our model: timings for LJACY and SADI on the 64 × 64 grid, for example, are
nearly equal to or even greater than those obtained on the 128 × 128 grid. Consequently,
in this study, “best” values of the model parameters are obtained by utilizing the tabulated
data for only the two largest problem sizes. (In a follow-on study, it is planned to consider
problem sizes greater than 256 × 256 so that parameter values may be obtained through
application of regression techniques.) The resulting values of c, ξ, η, and ξ + η are displayed
in Table 5 for the Y-MP and the CM-2.

Ignoring LSP for the moment, the following observations are noted:

1. As one should expect, the listed values of ξ for a particular problem are machine
independent, differing by less than two percent between the Y-MP and the CM-2.
Similarly, the values of η for a particular machine are problem independent, differing
by roughly the same percentage between EXPNA and EXP6G.

2. The values of ξ for SADI and the MILU preconditioners lie between 0.50 and 0.42;
for all other preconditioners the values cluster around unity. Thus, the number of
iterations for the former grows with problem size at roughly half the rate of the latter.

3. The values of ξ for EXP6G are greater than unity; for EXPNA they are less than unity.
EXP6G is thus a more difficult problem to solve than is EXPNA—as one would expect
since the condition number of Q−1A is generally two orders of magnitude greater for
the former than the latter.

4. Values of η for the ILU preconditioners are the “same” as those for the correspond-
ing MILU preconditioners. Thus, c and ξ are the important factors for determining
rankings for the preconditioners within these categories.

5. The values of c are considerably larger on the CM-2 than the corresponding values on
the Y-MP; however, values of the growth factor (ξ+η) are consistently less. Hence, for
each of the applicable preconditioners, there is a minimum problem size beyond which
each will run faster on the CM-2 than on the Y-MP.

6. For EXPNA on the CM-2, ξ + η is substantially smaller for SADI than for any of the
applicable preconditioners, even though its value of c is substantially greater. Hence,
SADI should ultimately become the “best” preconditioner for EXPNA on the CM-2.

7. The line version of ILU(2) is always faster than the line version of ILU(1) which, in
turn, is always faster than the line version of ILU(0) for both EXPNA and EXP6G on
the Y-MP. (Values of both c and ξ + η for the line version of ILU(k) are monotonically
decreasing as k goes from 0 to 2.)

21



EXPNA EXP6G
Method c ξ η ξ + η c ξ η ξ + η Notes

Y-MP
JACOBI .1885 0.979 1.982 2.961 1.339 1.061 1.991 3.052
LJACX .2622 0.956 1.969 2.925 .6286 1.127 1.976 3.103
LJACY .2404 0.956 1.987 2.943 .7187 1.253 1.987 3.240
SGS-RB .1444 0.974 1.999 2.973 1.144 1.059 1.983 3.042
SADI .4488 0.495 2.056 2.551 — — — —
ILU(0) .4386 0.930 1.932 2.862 .6420 1.033 1.923 2.956 LINE

.4236 0.930 1.838 2.768 .7363 1.033 1.799 2.832 WAVE
ILU(1) .2985 0.929 1.921 2.850 .4337 1.023 1.930 2.953 LINE

.5208 0.929 1.743 2.672 .7774 1.023 1.748 2.771 WAVE
ILU(2) .2822 0.930 1.901 2.831 .4290 1.007 1.922 2.929 LINE

.7489 0.930 1.678 2.608 1.120 1.007 1.704 2.711 WAVE
ILU(3) .2832 0.904 1.913 2.817 .4309 0.982 1.942 2.924 LINE

2.027 0.904 1.483 2.387 2.874 0.982 1.528 2.510 WAVE
MILU(0) 1.474 0.503 1.934 2.437 — — — — LINE

1.377 0.503 1.848 2.351 — — — — WAVE
MILU(1) 1.850 0.427 1.929 2.356 — — — — LINE

3.169 0.427 1.756 2.183 — — — — WAVE
MILU(2) 1.761 0.444 1.905 2.349 — — — — LINE

4.487 0.444 1.691 2.135 — — — — WAVE
MILU(3) 1.523 0.466 1.926 2.392 — — — — LINE

10.57 0.466 1.503 1.969 — — — — WAVE
CM-2

JACOBI 8.213 0.979 1.235 2.214 52.35 1.081 1.240 2.321
LJACX 89.70 0.961 0.930 1.891 219.7 1.127 0.934 2.061
LJACY 133.2 0.961 0.930 1.891 391.8 1.267 0.923 2.190
SGS-RB 4.698 0.974 1.393 2.367 28.96 1.078 1.401 2.479
SADI 487.2 0.498 0.885 1.383 — — — —

Table 5: Values of c, ξ, η, and ξ + η for problems EXPNA and EXP6G on the Y-MP and
CM-2. Model: TIMIT = c(1/h)ξ+η = c(nx + 1)ξ+η (in milliseconds)

22



8. Similarly, the wave version of ILU(0) is always faster than the line version of ILU(0)
for both EXPNA and EXP6G on the Y-MP. Ultimately, as problem size increases, the
wave version of ILU(k) becomes faster than the line version of ILU(k) for k = 1, 2, 3.

9. The preceding observation also applies to the wave version of MILU(k) and the line
version of MILU(k) for k = 0, 1, 2, 3, for EXPNA on the Y-MP.

10. The wave version of ILU(3) has, by far, the smallest growth factor (ξ + η = 2.510)
of any of the preconditioners for EXP6G on the Y-MP. Hence, it ultimately should
become the fastest for EXP6G on that machine. For similar reasons, the wave version
of MILU(3) should become the fastest for EXPNA on the same machine.

11. Values of c and ξ+η indicate that LJACX is always faster than LJACY for EXP6G on
both machines and for EXPNA on the CM-2. Further, for EXPNA on both machines
and for EXP6G on the CM-2, performance of LJACX relative to JACOBI increases
with increasing problem size; the reverse is true for EXP6G on the Y-MP.

12. Similar arguments hold for SGS-RB. For EXPNA on both machines, performance
relative to JACOBI decreases with increasing problem size, as does that for EXP6G
on the CM-2; on the other hand, SGS-RB is always faster than JACOBI for EXP6G
on the Y-MP.

13. SADI starts out well for EXPNA on the Y-MP, but is ultimately overtaken and sur-
passed by the wave version of ILU(3) and all the MILU preconditioners.

For the least squares polynomial preconditioner, LSP, an additional parameter comes into
play, namely the degree n of the polynomial. Neglecting, for the moment, explicit inclusion
of the parameter h, the assumed model for the preconditioner is

TIMIT =
C1 (C2 + n)

(1 + n)µ ,

where C1, C2, and µ are constants dependent upon problem definition, problem size, and
the utilized computer. The form of the model is prompted by an intuitive expectation that
(1), the number of iterations should decrease with increasing n like

C3

(1 + n)µ

for some µ close to unity, the “1” being selected so that at n = 0, C3 should approximate
the number of JACOBI iterations; and (2), the computer time per iteration should increase
linearly with n, as in C4 + C5n. The validity of the model has been confirmed by rather
exhaustive analysis of the LSP performance data recorded in Tables 8 through 31.

Employing a least squares minimization procedure, the LSP parameters C1, C2, and µ
have been derived for problems EXPNA and EXP6G relating TIMIT to problem size and

23



EXPNA EXP6G
Size C1 C2 µ C1 C2 µ

Y-MP
63 × 63 0.02701 1.916 0.95 0.2480 1.722 0.95

127 × 127 0.2093 1.915 0.95 2.238 2.082 0.95
255 × 255 1.566 2.030 0.95 17.80 2.281 0.95

CM-2
64 × 64 0.05383 3.125 0.95 0.4676 3.269 0.95

128 × 128 0.2381 2.187 0.95 2.485 2.259 0.95
256 × 256 1.364 1.600 0.95 15.48 1.718 0.95

Table 6: LSP parameter values of C1, C2, and µ for problems EXPNA and EXP6G on the
Y-MP and CM-2 for three problem sizes. Model: TIMIT = C1(C2 +n)/(1+n)µ (in seconds)
where n is the degree of the polynomial.

degree of polynomial for the Y-MP and CM-2. These values are recorded in Table 6. The
degree to which the values of TIMIT produced by the model agree with those recorded in
Tables 8 through 31 is illustrated in Figure 10 for EXPNA and Figure 11 for EXP6G, wherein
log(TIMIT) versus n is depicted graphically for the three problem sizes. It should be noted
that the “critical coefficient”, r2, measuring the goodness of fit of predicted values of TIMIT
(calculated from the model) versus recorded values, lies between 0.968 and 0.994 for the two
largest problem sizes for both EXPNA and EXP6G, and in all cases is greater than 0.92.

Let T = ln(TIMIT). Taking the first derivative of T with respect to n, in the model, one
obtains

T ′(n) = −
(

µ

1 + n
− 1

C2 + n

)
.

Setting the derivative equal to zero yields the optimum value of n for which TIMIT is a
minimum, namely

nopt =
µC2 − 1

1 − µ
= 19C2 − 20.

From Table 6 it may be concluded, therefore, that nopt “moves to the right” on the Y-MP
and “moves to the left” on the CM-2 with increasing problem size for both EXPNA and
EXP6G.

Evaluating T ′ at n = 1, one may also conclude that the initial fractional rate of decrease
in TIMIT with respect to increasing n is given by

−T ′(1) =
(

µ

2
− 1

C2 + 1

)
=
(
47.5 − 100

C2 + 1

)
%.

Thus, relative to JACOBI, the effectiveness of LSP as a preconditioner for both problems
improves slightly with increasing problem size on the Y-MP, just as it deteriorates, rather

24



Degree

Time (sec.)

• CM-2
◦ Y-MP
· Model

64 × 64

128 × 128

256 × 256

0.01

0.1

1

10

0 5 10 15 20

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

•
• • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • •

·· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Figure 10: Time for LSP(n), EXPNA

25



Degree

Time (sec.)

• CM-2
◦ Y-MP
· Model

64 × 64

128 × 128

256 × 256

0.1

1

10

100

0 5 10 15 20

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

•
• • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • •

·· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Figure 11: Time for LSP(n), EXP6G

26



EXPNA EXP6G
Method c ξ η ξ + η c ξ η ξ + η

Y-MP
LSP(nopt) .1943 0.950 1.954 2.904 1.354 1.059 1.933 2.992

C-M2
LSP(nopt) 1.315 0.939 1.593 2.532 7.590 1.067 1.587 2.654

Table 7: LSP(nopt) values of c, ξ, η, and ξ + η for problems EXPNA and EXP6G on the
Y-MP and CM-2. Model: TIMIT = c(1/h)ξ+η = c(nx + 1)ξ+η (in milliseconds)

more markedly, on the CM-2. Nevertheless, in terms of absolute effectiveness, Table 6
indicates that, for the largest problem size, LSP on the CM-2 is faster than on the Y-MP
for all n, (both C1 and C2 for the CM-2 are less than the corresponding values on the Y-MP
for both problems). The fact that LSP on the CM-2 steadily overtakes and surpasses its
performance on the Y-MP is illustrated graphically in Figures 10 and 11.

Next, taking the second derivative of T with respect to n, and evaluating it at nopt yields

T ′′ (nopt) =
µ(1 − µ)

(1 + nopt)
2 =

(
4.75

(1 + nopt)
2

)
%.

Inasmuch as the nopt equation yields values of 10 ≤ nopt ≤ 42, T is thus very “flat” on either
side of nopt for both problems. In fact, experience indicates that the values 8 ≤ n ≤ 12
produce very nearly optimum LSP performance in all cases.

Finally, evaluating TIMIT at nopt leads to

TIMIT (nopt) =
C1

µ

(
C2 − 1

1 − µ

)1−µ

= 1.220C1 (C2 − 1).05

from which the contribution of h, ξ, and η may be determined, just as they were for the
other preconditioners, using the two largest problem sizes. First note, however, that, based
on Table 6 values, the term (C2 − 1).05 for the two sizes lies in the region (0.975, 1.012) for
both problems for both machines. Thus, the term may be set equal to unity, for comparison
purposes, and the equation becomes simply

TIMIT (nopt) ≈ 1.220C1.

Let 1.220C1 = c(1/h)ξ+η, where ξ and η are defined as previously (the growth component
related to number of iterations and computer time per iteration, respectively). The results
in Table 7 are obtained which may be appended to Table 5.

A comparison of these parameter values with those displayed in Table 5 provides some
insight as to why LSP is more effective on the CM-2 than on the Y-MP (see Tables 3 and
4):

27



1. For EXPNA on the Y-MP, the value of ξ +η for LSP(nopt) is significantly greater than
the corresponding values for SADI and all the ILU and MILU preconditioners, and its
value of c is not sufficiently smaller as to make it a serious competitor.

2. A similar observation holds for EXP6G on the Y-MP. However, not only is the value
of ξ + η for LSP(nopt) greater than those for the ILU preconditioners, its value of c is
also greater, with the single exception of that for the wave version of ILU(3).

3. On the other hand, for both EXPNA and EXP6G on the CM-2, the value of c for
LSP(nopt) is smaller than those of its competitors by as much as two orders of magni-
tude, which tends to compensate for its larger value of ξ + η. Nevertheless, as problem
size increases, LSP(nopt) is ultimately overtaken by all its competitors including Jacobi
(unpreconditioned conjugate gradient).

7 Concluding Remarks

This study has investigated the performance characteristics of a number of alternative pre-
conditioners incorporated into the PCG method and applied to the solution of the two-
dimensional diffusion equation on the Y-MP and the CM-2. The implementations of the
resulting algorithms were optimized for both machines and subsequently utilized in solving
four sample problems of varying degrees of complexity—coefficients ranging from continu-
ous and isotropic to sharply discontinuous and anisotropic—for each of three increasingly
larger problem sizes. The particular preconditioners selected for comparison were Jacobi,
line Jacobi in both x and y directions (LJACX and LJACY), incomplete LU (ILU) and modi-
fied incomplete LU (MILU) decompositions, red-black Gauss-Seidel (SGS-RB), least-squares
polynomial (LSP(n)), and a new symmetric alternating direction method (SADI).

The selection of the “best” preconditioner is strongly dependent upon the complexity of
the problem at hand, the size of the problem, and the computer being utilized. Although
the study indicates that the selection cannot be performed a priori, the observations given
below should prove useful in the selection process for similar problems.

For continuous problems on the Y-MP, SADI and the wave versions of MILU(k) perform
better than their competitors, primarily because the number of iterations required for their
convergence grows like h− 1

2 rather than h−1. For discontinuous problems, SADI is preferred if
“good” values of ω and ω′ can be found; otherwise, the wave versions of ILU(k) are preferable
since Q for MILU(k) is not positive definite.

Neither the ILU(k) nor MILU(k) preconditioners parallelize well due to their inherent
recursiveness; hence, they are not effective on the CM-2. LSP(n) (for n ≈ 10) is most
effective on that machine for “small” problems, but is eventually surpassed by SADI (if
applicable) and both LJACX and LJACY as the problem size increases.

28



8 Acknowledgements

This research was supported in part by the Florida State University Supercomputer Com-
putations Research Institute which is partially funded by the U.S. Department of Energy
through Contract No. DE-FC05-85ER250000. Time on the Cray Y-MP was provided in
part by the Florida State University Computation Center.

29



References

[1] C. Ashcraft. “A Moving Computation Front Approach for Vectorizing ICCG Calcula-
tions.” General Motors Research Publication, GMR-5174, 1985.

[2] C. Ashcraft and R. Grimes. “On Vectorizing Incomplete Factorizations and SSOR Pre-
conditioners.” SIAM Journal on Scientific and Statistical Computing, Vol. 9, No. 1,
January 1988, pp. 122–151.

[3] CMSSL Release Notes, Version 3.0 Beta, Thinking Machines Corporation, Cambridge,
Massachusetts, January, 1992.

[4] T. Dupont. “A Factorization Procedure for the Solution of Elliptic Difference Equa-
tions.” SIAM Journal of Numerical Analysis, Vol. 5, No. 4, December 1968, pp. 753–
782.

[5] T. Dupont, R. P. Kendall, and H. H. Rachford. “An Approximate Factorization Proce-
dure for Solving Self-Adjoint Elliptic Difference Equations.” SIAM Journal of Numerical
Analysis, Vol. 5, No. 3, September 1968, pp. 559–573.

[6] A. Greenbaum and G. H. Rodrigue. “The Incomplete Cholesky Conjugate Gradient
Method for the STAR (5-point operator).” Research Report UCID-17574, Lawrence
Livermore Laboratory, Livermore, CA., 1977.

[7] I. Gustafsson. “A Class of First Order Factorization Methods.” BIT, Vol. 18, 1978, pp.
142–156.

[8] I. Gustafsson. Stability and Rate of Convergence of Modified Incomplete Cholesky Fac-
torization Methods. Doctoral dissertation, Chalmers University of Technology and the
University of Göteborg, April 1979.

[9] R. Hockney and C. Jessope. Parallel Computers. Adam Hilger, 1981.

[10] S. Johnsson. “Solving Tridiagonal Systems on Ensemble Architectures.” SIAM Journal
on Scientific and Statistical Computing, Vol. 8, No. 3, May 1987, pp. 354–392.

[11] C. Ho and S. Johnsson. “Optimizing Tridiagonal Solvers for Alternating Direction Meth-
ods on Boolean Cube Multiprocessors.” SIAM Journal on Scientific and Statistical Com-
puting, Vol. 11, No. 3, May 1990, pp. 563–592.

[12] D. S. Kershaw. “The Incomplete Cholesky–Conjugate Gradient Method for the Iterative
Solution of Systems of Linear Equations.” Journal of Computational Physics, Vol. 26,
No. 1, January 1978, pp. 43–65.

[13] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. “Basic Linear Algebra
Subprograms for Fortran Usage.” ACM Transactions on Mathematical Software, Vol. 5,
No. 3, September 1979, pp. 308–323.

30



[14] J. A. Meijerink and H. A. van der Vorst. “An Iterative Solution Method for Linear
Systems of Which the Coefficient Matrix is a Symmetric M-Matrix.” Mathematics of
Computation, Vol. 31, No. 137, January 1977, pp. 148–162.

[15] C. H. Tong. “Parallel Preconditioned Conjugate Gradient Methods for Elliptic Partial
Differential Equations.” Ph. D. Thesis, CAM Report 90-29, Department of Mathemat-
ics, University of California at Los Angeles, December 1990.

[16] H. A. van der Vorst. “A Vectorizable Variant of Some ICCG Methods.” SIAM Journal
on Scientific and Statistical Computing, Vol. 3, No. 3, September 1982, pp. 350–356.

[17] H. A. van der Vorst. “(M)ICCG for 2D Problems on Vectorcomputers.” Report No.
A-17, Data Processing Center, Kyoto University, Kyoto, Japan, December 1986.

[18] H. A. van der Vorst. “The Performance of FORTRAN Implementations for Precondi-
tioned Conjugate Gradients on Vector Computers.” Parallel Computing, Vol. 3, 1986,
pp. 49–58.

[19] D. M. Young. Iterative Solution of Large Linear Systems. New York: Academic Press,
1971.

31



A Tables

In Tables 8 through 31, the following abbreviations are used:

Name Meaning
ITER number of PCG iterations required for convergence
TIMIT corresponding CPU time in seconds, excluding factorizations
TIMFAC factorization CPU time in seconds
κ (Q−1A) condition number of Q−1A
JACOBI Jacobi (Section 4.1)
LJACX line Jacobi, x direction (Section 4.2)
LJACY line Jacobi, y direction (Section 4.2)
SGS-RB symmetric Gauss-Seidel using red-black ordering (Section 4.3)
ILU(k) Incomplete LU decomposition, fill-in level k (Section 4.4)
MILU(k) Modified Incomplete LU decomposition, fill-in level k

(Section 4.4)
SADI Symmetric Alternating Direction Implicit (Section 4.5)
LSP(k) Least Squares Polynomial, degree k, weights c = d = −1

2

(Section 4.6)

32



Method ITER TIMIT TIMFAC κ (Q−1A) Notes
JACOBI 144 0.042472 0.171640E+04
LJACX 103 0.050855 0.000380 0.858700E+03
LJACY 103 0.050341 0.000375 0.858700E+03
SGS-RB 73 0.034746 0.429600E+03
SADI 15 0.019001 0.000752 0.593808E+01
ILU(0) 45 0.068967 0.001964 0.152530E+03 LINE

45 0.046948 0.000739 WAVE
ILU(1) 28 0.045132 0.002184 0.575214E+02 LINE

28 0.042488 0.001486 WAVE
ILU(2) 23 0.039449 0.002388 0.373273E+02 LINE

23 0.048709 0.002275 WAVE
ILU(3) 17 0.037042 0.003768 0.198886E+02 LINE

17 0.047675 0.004086 WAVE
MILU(0) 25 0.038897 0.002603 0.208639E+02 LINE

25 0.026303 0.000826 WAVE
MILU(1) 20 0.032689 0.002561 0.110770E+02 LINE

20 0.030692 0.001611 WAVE
MILU(2) 17 0.029528 0.002982 0.802239E+01 LINE

17 0.036521 0.002513 WAVE
MILU(3) 14 0.030771 0.005949 0.575696E+01 LINE

14 0.039649 0.005043 WAVE
LSP(1) 81 0.040894 0.536916E+03
LSP(2) 56 0.037067 0.264998E+03
LSP(3) 43 0.035161 0.158303E+03
LSP(4) 35 0.034309 0.105387E+03
LSP(5) 30 0.034396 0.752685E+02
LSP(6) 26 0.033844 0.564814E+02
LSP(7) 23 0.033650 0.439916E+02
LSP(8) 20 0.032664 0.352410E+02
LSP(9) 19 0.034332 0.288784E+02
LSP(10) 17 0.033641 0.241414E+02
LSP(11) 15 0.032126 0.204805E+02
LSP(12) 14 0.032343 0.175974E+02

Table 8: EXPNA, 63 × 63, Y-MP

33



Method ITER TIMIT TIMFAC κ (Q−1A) Notes
JACOBI 278 0.327065 0.686759E+04
LJACX 198 0.382458 0.001443 0.343430E+04
LJACY 198 0.381542 0.001436 0.343430E+04
SGS-RB 140 0.265556 0.171740E+04
SADI 22 0.106589 0.002900 0.115549E+02
ILU(0) 85 0.469813 0.007905 0.607789E+03 LINE

85 0.288726 0.002366 WAVE
ILU(1) 52 0.302887 0.008723 0.227792E+03 LINE

52 0.222086 0.003961 WAVE
ILU(2) 42 0.260189 0.009521 0.147135E+03 LINE

42 0.234915 0.005867 WAVE
ILU(3) 31 0.244182 0.015156 0.774050E+02 LINE

31 0.217154 0.010480 WAVE
MILU(0) 36 0.201577 0.010503 0.442069E+02 LINE

36 0.123618 0.002657 WAVE
MILU(1) 29 0.170832 0.010305 0.227876E+02 LINE

29 0.126155 0.004306 WAVE
MILU(2) 25 0.156773 0.012034 0.162546E+02 LINE

25 0.141300 0.006666 WAVE
MILU(3) 21 0.166930 0.024581 0.115918E+02 LINE

21 0.148774 0.012806 WAVE
LSP(1) 156 0.314617 0.214666E+04
LSP(2) 109 0.289754 0.105894E+04
LSP(3) 84 0.275546 0.632170E+03
LSP(4) 69 0.270674 0.420465E+03
LSP(5) 58 0.264401 0.299982E+03
LSP(6) 50 0.259471 0.224893E+03
LSP(7) 44 0.255197 0.174866E+03
LSP(8) 40 0.259827 0.139925E+03
LSP(9) 36 0.256977 0.114496E+03
LSP(10) 33 0.256131 0.954386E+02
LSP(11) 30 0.254094 0.807918E+02
LSP(12) 28 0.255124 0.693097E+02

Table 9: EXPNA, 127 × 127, Y-MP

34



Method ITER TIMIT TIMFAC κ (Q−1A) Notes
JACOBI 548 2.546742 0.274724E+05
LJACX 384 2.905259 0.005676 0.137367E+05
LJACY 384 2.932808 0.005597 0.137367E+05
SGS-RB 275 2.085448 0.686859E+04
SADI 31 0.624758 0.011380 0.230215E+02
ILU(0) 162 3.414371 0.031674 0.242893E+04 LINE

162 1.967036 0.008406 WAVE
ILU(1) 99 2.184457 0.034838 0.908866E+03 LINE

99 1.415249 0.013106 WAVE
ILU(2) 80 1.850989 0.038012 0.586227E+03 LINE

80 1.432497 0.019393 WAVE
ILU(3) 58 1.720540 0.060850 0.307364E+03 LINE

58 1.136112 0.030399 WAVE
MILU(0) 51 1.091996 0.042318 0.928515E+02 LINE

51 0.630418 0.009544 WAVE
MILU(1) 39 0.874606 0.041434 0.465313E+02 LINE

39 0.573123 0.014590 WAVE
MILU(2) 34 0.798797 0.049921 0.328831E+02 LINE

34 0.620548 0.022054 WAVE
MILU(3) 29 0.875781 0.098588 0.233810E+02 LINE

29 0.582440 0.037217 WAVE
LSP(1) 302 2.405113 0.858565E+04
LSP(2) 211 2.213019 0.423468E+04
LSP(3) 163 2.115581 0.252763E+04
LSP(4) 133 2.059023 0.168087E+04
LSP(5) 112 2.015521 0.119896E+04
LSP(6) 97 1.988142 0.898507E+03
LSP(7) 86 1.979721 0.698470E+03
LSP(8) 76 1.940181 0.558643E+03
LSP(9) 69 1.936334 0.456960E+03
LSP(10) 63 1.925360 0.380802E+03
LSP(11) 58 1.921363 0.322187E+03
LSP(12) 54 1.928517 0.276159E+03

Table 10: EXPNA, 255 × 255, Y-MP

35



Method ITER TIMIT TIMFAC κ (Q−1A) Notes
JACOBI 166 0.048700 0.282683E+04
LJACX 150 0.073762 0.000379 0.156490E+04
LJACY 150 0.073355 0.000374 0.156490E+04
SGS-RB 83 0.039637 0.707208E+03
SADI 20 0.024959 0.000754 0.109064E+02
ILU(0) 55 0.084052 0.001966 0.264348E+03 LINE

55 0.057254 0.000735 WAVE
ILU(1) 34 0.054356 0.002182 0.908983E+02 LINE

34 0.051315 0.001478 WAVE
ILU(2) 27 0.046176 0.002386 0.566950E+02 LINE

27 0.057323 0.002269 WAVE
ILU(3) 19 0.040955 0.003768 0.301723E+02 LINE

19 0.053077 0.004149 WAVE
MILU(0) 28 0.043384 0.002603 0.214438E+02 LINE

28 0.029549 0.000825 WAVE
MILU(1) 21 0.034245 0.002560 0.122160E+02 LINE

21 0.032273 0.001586 WAVE
MILU(2) 18 0.031265 0.003045 0.927800E+01 LINE

18 0.038604 0.002543 WAVE
MILU(3) 16 0.034971 0.005973 0.721260E+01 LINE

16 0.045132 0.005057 WAVE
LSP(1) 92 0.046451 0.883930E+03
LSP(2) 65 0.043042 0.436142E+03
LSP(3) 50 0.040828 0.260461E+03
LSP(4) 41 0.039958 0.173293E+03
LSP(5) 34 0.038641 0.123709E+03
LSP(6) 30 0.038907 0.927763E+02
LSP(7) 26 0.037971 0.721984E+02
LSP(8) 23 0.037521 0.578024E+02
LSP(9) 21 0.037581 0.473542E+02
LSP(10) 19 0.037180 0.394927E+02
LSP(11) 18 0.038399 0.334903E+02
LSP(12) 16 0.036845 0.287523E+02

Table 11: EXPNC, 63 × 63, Y-MP

36



Method ITER TIMIT TIMFAC κ (Q−1A) Notes
JACOBI 327 0.383597 0.113251E+05
LJACX 243 0.465141 0.001446 0.628647E+04
LJACY 243 0.462368 0.001437 0.628647E+04
SGS-RB 164 0.307850 0.283176E+04
SADI 31 0.149446 0.002909 0.330615E+02
ILU(0) 109 0.601576 0.007901 0.111337E+04 LINE

109 0.368045 0.002368 WAVE
ILU(1) 65 0.377252 0.008721 0.385927E+03 LINE

65 0.276979 0.003997 WAVE
ILU(2) 52 0.317764 0.009532 0.241404E+03 LINE

52 0.290452 0.005932 WAVE
ILU(3) 36 0.281528 0.015188 0.126965E+03 LINE

36 0.249334 0.010495 WAVE
MILU(0) 38 0.212829 0.010515 0.435445E+02 LINE

38 0.130459 0.002653 WAVE
MILU(1) 29 0.170633 0.010308 0.248312E+02 LINE

29 0.125644 0.004308 WAVE
MILU(2) 25 0.155461 0.012310 0.189208E+02 LINE

25 0.142133 0.006672 WAVE
MILU(3) 22 0.174772 0.024378 0.148479E+02 LINE

22 0.155739 0.012874 WAVE
LSP(1) 182 0.365941 0.353961E+04
LSP(2) 127 0.335222 0.174594E+04
LSP(3) 98 0.320001 0.104222E+04
LSP(4) 80 0.311642 0.693142E+03
LSP(5) 67 0.303633 0.494483E+03
LSP(6) 59 0.303970 0.370604E+03
LSP(7) 51 0.295230 0.288135E+03
LSP(8) 46 0.296305 0.230495E+03
LSP(9) 42 0.297425 0.188593E+03
LSP(10) 38 0.294212 0.157193E+03
LSP(11) 35 0.293790 0.133026E+03
LSP(12) 32 0.289445 0.114052E+03

Table 12: EXPNC, 127 × 127, Y-MP

37



Method ITER TIMIT TIMFAC κ (Q−1A) Notes
JACOBI 639 3.027315 0.453207E+05
LJACX 479 3.710451 0.005693 0.251979E+05
LJACY 479 3.683182 0.005641 0.251979E+05
SGS-RB 320 2.464935 0.113307E+05
SADI 45 0.860395 0.011474 0.119463E+03
ILU(0) 210 4.421512 0.031781 0.465422E+04 LINE

210 2.598265 0.008391 WAVE
ILU(1) 128 2.830221 0.034907 0.164300E+04 LINE

128 1.851769 0.013213 WAVE
ILU(2) 101 2.344115 0.038048 0.103663E+04 LINE

101 1.825899 0.019411 WAVE
ILU(3) 69 2.050310 0.061099 0.542727E+03 LINE

69 1.369302 0.030190 WAVE
MILU(0) 52 1.106436 0.042294 0.883043E+02 LINE

52 0.640857 0.009417 WAVE
MILU(1) 39 0.874441 0.041398 0.504140E+02 LINE

39 0.564661 0.014405 WAVE
MILU(2) 34 0.802717 0.049879 0.384921E+02 LINE

34 0.625201 0.022126 WAVE
MILU(3) 30 0.904804 0.098571 0.303630E+02 LINE

30 0.604751 0.037271 WAVE
LSP(1) 354 2.844981 0.141633E+05
LSP(2) 248 2.614392 0.698559E+04
LSP(3) 191 2.531463 0.416957E+04
LSP(4) 156 2.434504 0.277268E+04
LSP(5) 131 2.386826 0.197770E+04
LSP(6) 114 2.380130 0.148202E+04
LSP(7) 101 2.302172 0.115205E+04
LSP(8) 90 2.318271 0.921326E+03
LSP(9) 81 2.254195 0.753649E+03
LSP(10) 74 2.236261 0.627953E+03
LSP(11) 68 2.259950 0.531312E+03
LSP(12) 63 2.267721 0.455387E+03

Table 13: EXPNC, 255 × 255, Y-MP

38



Method ITER TIMIT TIMFAC κ (Q−1A) Notes
JACOBI 224 0.066195 0.716080E+09
LJACX 159 0.080075 0.000382 0.358047E+09
LJACY 160 0.079698 0.000380 0.358037E+09
SGS-RB 112 0.053997 0.179021E+09
SADI 28 0.034206 0.000752 0.107402E+08
ILU(0) 70 0.107457 0.001971 0.637390E+08 LINE

70 0.073186 0.000744 WAVE
ILU(1) 42 0.067233 0.002191 0.225049E+08 LINE

42 0.063564 0.001496 WAVE
ILU(2) 34 0.057819 0.002392 0.146574E+08 LINE

34 0.071984 0.002278 WAVE
ILU(3) 24 0.051982 0.003772 0.726785E+07 LINE

24 0.067316 0.004211 WAVE
LSP(1) 125 0.063669 0.223775E+09
LSP(2) 87 0.057895 0.110367E+09
LSP(3) 67 0.055011 0.658733E+08
LSP(4) 55 0.053968 0.438018E+08
LSP(5) 46 0.052627 0.312420E+08
LSP(6) 40 0.052010 0.234085E+08
LSP(7) 35 0.051365 0.181955E+08
LSP(8) 31 0.050033 0.145415E+08
LSP(9) 28 0.050091 0.118960E+08
LSP(10) 26 0.050622 0.991189E+07
LSP(11) 24 0.050504 0.838555E+07
LSP(12) 22 0.050111 0.718978E+07

Table 14: EXP10G, 63 × 63, Y-MP

39



Method ITER TIMIT TIMFAC κ (Q−1A) Notes
JACOBI 458 0.540111 0.286497E+10
LJACX 325 0.628715 0.001439 0.143252E+10
LJACY 326 0.623105 0.001437 0.143249E+10
SGS-RB 229 0.436954 0.716261E+09
SADI 51 0.243623 0.002900 0.332972E+08
ILU(0) 137 0.756294 0.007894 0.256056E+09 LINE

137 0.465565 0.002364 WAVE
ILU(1) 84 0.485233 0.008725 0.943110E+08 LINE

84 0.357033 0.003988 WAVE
ILU(2) 68 0.417469 0.009529 0.606882E+08 LINE

68 0.379870 0.005991 WAVE
ILU(3) 49 0.381823 0.015482 0.314328E+08 LINE

49 0.339193 0.010532 WAVE
LSP(1) 255 0.516748 0.895325E+09
LSP(2) 179 0.475635 0.441582E+09
LSP(3) 138 0.450237 0.263563E+09
LSP(4) 113 0.439029 0.175257E+09
LSP(5) 95 0.433594 0.124991E+09
LSP(6) 82 0.423222 0.936656E+08
LSP(7) 72 0.416714 0.728070E+08
LSP(8) 65 0.416414 0.582135E+08
LSP(9) 59 0.416343 0.476205E+08
LSP(10) 53 0.408898 0.396666E+08
LSP(11) 49 0.408494 0.335595E+08
LSP(12) 45 0.403433 0.287635E+08

Table 15: EXP10G, 127 × 127, Y-MP

40



Method ITER TIMIT TIMFAC κ (Q−1A) Notes
JACOBI 920 4.341440 0.114474E+11
LJACX 651 4.990820 0.005690 0.572459E+10
LJACY 654 5.062027 0.005639 0.572435E+10
SGS-RB 460 3.560066 0.286255E+10
SADI 98 1.872049 0.011511 0.125950E+09
ILU(0) 274 5.795160 0.031702 0.102808E+10 LINE

274 3.398069 0.008391 WAVE
ILU(1) 167 3.743169 0.034977 0.381893E+09 LINE

167 2.470868 0.013310 WAVE
ILU(2) 134 3.142412 0.038263 0.247364E+09 LINE

134 2.459466 0.019819 WAVE
ILU(3) 98 2.942823 0.061159 0.127095E+09 LINE

98 1.974110 0.030944 WAVE
LSP(1) 514 4.214398 0.357831E+10
LSP(2) 361 3.899864 0.176489E+10
LSP(3) 278 3.743033 0.105339E+10
LSP(4) 227 3.660669 0.700457E+09
LSP(5) 192 3.609228 0.499602E+09
LSP(6) 166 3.539142 0.374359E+09
LSP(7) 146 3.409709 0.290990E+09
LSP(8) 131 3.450083 0.232694E+09
LSP(9) 118 3.429788 0.190315E+09
LSP(10) 108 3.384034 0.158570E+09
LSP(11) 99 3.360585 0.134149E+09
LSP(12) 91 3.321376 0.114961E+09

Table 16: EXP10G, 255 × 255, Y-MP

41



Method ITER TIMIT TIMFAC κ (Q−1A) Notes
JACOBI 1320 0.392268 0.260454E+06
LJACX 480 0.236575 0.000378 0.371203E+05
LJACY 993 0.488035 0.000377 0.248695E+06
SGS-RB 659 0.316157 0.651139E+05
ILU(0) 96 0.146199 0.001969 0.189364E+04 LINE

96 0.100138 0.000742 WAVE
ILU(1) 62 0.098447 0.002190 0.714995E+03 LINE

62 0.092979 0.001481 WAVE
ILU(2) 53 0.089184 0.002387 0.484406E+03 LINE

53 0.110584 0.002288 WAVE
ILU(3) 43 0.091096 0.003771 0.253909E+03 LINE

43 0.117128 0.004138 WAVE
LSP(1) 716 0.364189 0.813923E+05
LSP(2) 517 0.340093 0.401434E+05
LSP(3) 388 0.314923 0.239602E+05
LSP(4) 317 0.306519 0.159325E+05
LSP(5) 268 0.299674 0.113637E+05
LSP(6) 240 0.306195 0.851518E+04
LSP(7) 206 0.293814 0.661890E+04
LSP(8) 185 0.292289 0.529309E+04
LSP(9) 174 0.301962 0.432946E+04
LSP(10) 153 0.290710 0.360712E+04
LSP(11) 142 0.289998 0.305170E+04
LSP(12) 137 0.301826 0.261538E+04

Table 17: EXP6G, 63 × 63, Y-MP

42



Method ITER TIMIT TIMFAC κ (Q−1A) Notes
JACOBI 3035 3.620642 0.102513E+07
LJACX 1110 2.174744 0.001458 0.148357E+06
LJACY 2484 4.836868 0.001454 0.975923E+06
SGS-RB 1519 2.943505 0.256282E+06
ILU(0) 197 1.087702 0.007911 0.825599E+04 LINE

197 0.684637 0.002364 WAVE
ILU(1) 125 0.723288 0.008735 0.312277E+04 LINE

125 0.536892 0.003997 WAVE
ILU(2) 104 0.636844 0.009526 0.209457E+04 LINE

104 0.577452 0.005943 WAVE
ILU(3) 81 0.625329 0.015185 0.109095E+04 LINE

81 0.558993 0.010529 WAVE
LSP(1) 1690 3.448701 0.320352E+06
LSP(2) 1187 3.179861 0.158000E+06
LSP(3) 917 3.033640 0.943045E+05
LSP(4) 748 2.937570 0.627080E+05
LSP(5) 633 2.917993 0.447262E+05
LSP(6) 546 2.885896 0.335143E+05
LSP(7) 482 2.853758 0.260511E+05
LSP(8) 430 2.819671 0.208321E+05
LSP(9) 391 2.812176 0.170394E+05
LSP(10) 356 2.762201 0.141963E+05
LSP(11) 322 2.740924 0.120102E+05
LSP(12) 305 2.758649 0.102929E+05

Table 18: EXP6G, 127 × 127, Y-MP

43



Method ITER TIMIT TIMFAC κ (Q−1A) Notes
JACOBI 6330 30.039201 0.405866E+07
LJACX 2425 18.689889 0.005701 0.592057E+06
LJACY 5921 45.706048 0.005693 0.385752E+07
SGS-RB 3165 24.250905 0.101467E+07
ILU(0) 403 8.442958 0.031727 0.354688E+05 LINE

403 4.875713 0.008401 WAVE
ILU(1) 254 5.599851 0.034978 0.134133E+05 LINE

254 3.664779 0.013114 WAVE
ILU(2) 209 4.848693 0.038093 0.895486E+04 LINE

209 3.781382 0.019555 WAVE
ILU(3) 160 4.746380 0.061791 0.464959E+04 LINE

160 3.183803 0.030933 WAVE
LSP(1) 3538 28.775477 0.126833E+07
LSP(2) 2477 26.667278 0.625552E+06
LSP(3) 1914 25.261012 0.373368E+06
LSP(4) 1550 24.359400 0.248271E+06
LSP(5) 1318 23.866203 0.177078E+06
LSP(6) 1134 23.663889 0.132688E+06
LSP(7) 1001 23.169630 0.103140E+06
LSP(8) 901 22.757886 0.824774E+05
LSP(9) 809 22.367653 0.674609E+05
LSP(10) 738 22.244941 0.562046E+05
LSP(11) 679 22.286974 0.475494E+05
LSP(12) 627 22.194023 0.407511E+05

Table 19: EXP6G, 255 × 255, Y-MP

44



Method ITER TIMIT TIMFAC κ (Q−1A)
JACOBI 146 0.124878 0.177048E+04
LJACX 105 0.401819 0.005381 0.885738E+03
LJACY 105 1.695205 0.014451 0.885738E+03
SGS-RB 74 0.129855 0.443119E+03
SADI 15 0.583191 0.017801 0.599783E+01
LSP(1) 82 0.117209 0.553816E+03
LSP(2) 57 0.098095 0.273317E+03
LSP(3) 44 0.088884 0.163276E+03
LSP(4) 36 0.083609 0.108674E+03
LSP(5) 30 0.078855 0.776042E+02
LSP(6) 26 0.076374 0.582659E+02
LSP(7) 23 0.075347 0.453568E+02
LSP(8) 21 0.074869 0.363565E+02
LSP(9) 19 0.073659 0.297702E+02
LSP(10) 17 0.071381 0.248895E+02
LSP(11) 16 0.072260 0.210963E+02
LSP(12) 14 0.068020 0.181285E+02

Table 20: EXPNA, 64 × 64, CM-2

45



Method ITER TIMIT TIMFAC κ (Q−1A)
JACOBI 280 0.387084 0.697533E+04
LJACX 199 0.878923 0.006461 0.348816E+04
LJACY 199 1.316717 0.008638 0.348816E+04
SGS-RB 141 0.464717 0.174433E+04
SADI 22 0.404919 0.013307 0.116304E+02
LSP(1) 157 0.382408 0.218033E+04
LSP(2) 110 0.346949 0.107553E+04
LSP(3) 85 0.330429 0.642095E+03
LSP(4) 69 0.317973 0.427082E+03
LSP(5) 59 0.314903 0.304712E+03
LSP(6) 51 0.309727 0.228418E+03
LSP(7) 45 0.306537 0.177625E+03
LSP(8) 40 0.302199 0.142101E+03
LSP(9) 36 0.298871 0.116295E+03
LSP(10) 33 0.298712 0.969400E+02
LSP(11) 30 0.294301 0.820714E+02
LSP(12) 28 0.295822 0.703914E+02

Table 21: EXPNA, 128 × 128, CM-2

46



Method ITER TIMIT TIMFAC κ (Q−1A)
JACOBI 550 1.780877 0.276874E+05
LJACX 386 3.235871 0.009806 0.138442E+05
LJACY 386 4.811940 0.015418 0.138442E+05
SGS-RB 276 2.374925 0.692235E+04
SADI 31 1.050621 0.023566 0.231072E+02
LSP(1) 303 1.793777 0.865286E+04
LSP(2) 212 1.714581 0.426783E+04
LSP(3) 164 1.683696 0.254745E+04
LSP(4) 133 1.654929 0.169404E+04
LSP(5) 112 1.638424 0.120836E+04
LSP(6) 97 1.631717 0.905524E+03
LSP(7) 86 1.635767 0.703962E+03
LSP(8) 77 1.634273 0.563014E+03
LSP(9) 70 1.640202 0.460558E+03
LSP(10) 63 1.615991 0.383770E+03
LSP(11) 58 1.616607 0.324698E+03
LSP(12) 54 1.625264 0.278328E+03

Table 22: EXPNA, 256 × 256, CM-2

47



Method ITER TIMIT TIMFAC κ (Q−1A)
JACOBI 168 0.143610 0.291603E+04
LJACX 153 0.583111 0.005392 0.161440E+04
LJACY 153 2.468681 0.014468 0.161440E+04
SGS-RB 84 0.147437 0.729509E+03
SADI 20 0.766265 0.017790 0.110349E+02
LSP(1) 94 0.133948 0.911805E+03
LSP(2) 66 0.113362 0.449880E+03
LSP(3) 51 0.102704 0.268661E+03
LSP(4) 41 0.094907 0.178773E+03
LSP(5) 35 0.091588 0.127602E+03
LSP(6) 30 0.087655 0.957091E+02
LSP(7) 27 0.087822 0.744718E+02
LSP(8) 24 0.085078 0.596257E+02
LSP(9) 21 0.081033 0.488367E+02
LSP(10) 20 0.083299 0.407167E+02
LSP(11) 18 0.080756 0.345217E+02
LSP(12) 17 0.081640 0.296463E+02

Table 23: EXPNC, 64 × 64, CM-2

48



Method ITER TIMIT TIMFAC κ (Q−1A)
JACOBI 329 0.454586 0.115028E+05
LJACX 244 1.076539 0.006454 0.638529E+04
LJACY 244 1.612855 0.008639 0.638529E+04
SGS-RB 165 0.542812 0.287620E+04
SADI 32 0.580945 0.013309 0.335722E+02
LSP(1) 183 0.445415 0.359517E+04
LSP(2) 128 0.403233 0.177334E+04
LSP(3) 99 0.384079 0.105858E+04
LSP(4) 81 0.372554 0.704019E+03
LSP(5) 68 0.362222 0.502225E+03
LSP(6) 59 0.357425 0.376423E+03
LSP(7) 52 0.353249 0.292676E+03
LSP(8) 46 0.346497 0.234112E+03
LSP(9) 42 0.347422 0.191522E+03
LSP(10) 38 0.342697 0.159635E+03
LSP(11) 35 0.341872 0.135112E+03
LSP(12) 32 0.336682 0.115846E+03

Table 24: EXPNC, 128 × 128, CM-2

49



Method ITER TIMIT TIMFAC κ (Q−1A)
JACOBI 641 2.075411 0.456755E+05
LJACX 481 4.030577 0.009812 0.253954E+05
LJACY 481 5.993460 0.015417 0.253954E+05
SGS-RB 321 2.759812 0.114194E+05
SADI 45 1.510728 0.023567 0.120393E+03
LSP(1) 356 2.106533 0.142741E+05
LSP(2) 249 2.012677 0.704028E+04
LSP(3) 192 1.969531 0.420221E+04
LSP(4) 157 1.951580 0.279438E+04
LSP(5) 132 1.928639 0.199318E+04
LSP(6) 114 1.914945 0.149361E+04
LSP(7) 101 1.917841 0.116108E+04
LSP(8) 90 1.906675 0.928543E+03
LSP(9) 82 1.917524 0.759540E+03
LSP(10) 75 1.919202 0.632868E+03
LSP(11) 68 1.890822 0.535467E+03
LSP(12) 63 1.891449 0.458961E+03

Table 25: EXPNC, 256 × 256, CM-2

50



Method ITER TIMIT TIMFAC κ (Q−1A)
JACOBI 235 0.200048 0.781338E+09
LJACX 168 0.640791 0.005389 0.390677E+09
LJACY 167 2.650017 0.014406 0.390665E+09
SGS-RB 117 0.203211 0.195336E+09
SADI 30 1.115230 0.017728 0.117126E+08
LSP(1) 131 0.185930 0.244168E+09
LSP(2) 92 0.157087 0.120425E+09
LSP(3) 71 0.142366 0.718774E+08
LSP(4) 58 0.133262 0.477937E+08
LSP(5) 49 0.127149 0.340887E+08
LSP(6) 42 0.121622 0.255439E+08
LSP(7) 37 0.118365 0.198431E+08
LSP(8) 33 0.115531 0.158763E+08
LSP(9) 30 0.114129 0.129862E+08
LSP(10) 27 0.111726 0.108197E+08
LSP(11) 25 0.110681 0.914760E+07
LSP(12) 23 0.108853 0.783556E+07

Table 26: EXP10G, 64 × 64, CM-2

51



Method ITER TIMIT TIMFAC κ (Q−1A)
JACOBI 469 0.646996 0.299196E+10
LJACX 331 1.458799 0.006497 0.149603E+10
LJACY 330 2.180169 0.008639 0.149600E+10
SGS-RB 234 0.767299 0.748017E+09
SADI 52 0.933184 0.013304 0.347732E+08
LSP(1) 261 0.633885 0.935020E+09
LSP(2) 183 0.575177 0.461161E+09
LSP(3) 141 0.544543 0.275248E+09
LSP(4) 115 0.526859 0.183026E+09
LSP(5) 97 0.514440 0.130543E+09
LSP(6) 84 0.507081 0.978167E+08
LSP(7) 74 0.500096 0.760345E+08
LSP(8) 66 0.494041 0.608016E+08
LSP(9) 60 0.492962 0.497196E+08
LSP(10) 55 0.492216 0.414321E+08
LSP(11) 50 0.484398 0.350396E+08
LSP(12) 47 0.489873 0.300379E+08

Table 27: EXP10G, 128 × 128, CM-2

52



Method ITER TIMIT TIMFAC κ (Q−1A)
JACOBI 926 2.997120 0.116977E+11
LJACX 656 5.495079 0.009849 0.584963E+10
LJACY 653 8.133537 0.015421 0.584986E+10
SGS-RB 463 3.975206 0.292510E+10
SADI 99 3.286123 0.023561 0.128718E+09
LSP(1) 516 3.051395 0.365630E+10
LSP(2) 362 2.923179 0.180349E+10
LSP(3) 280 2.867408 0.107644E+10
LSP(4) 228 2.829357 0.715781E+09
LSP(5) 193 2.814884 0.510531E+09
LSP(6) 167 2.798484 0.382547E+09
LSP(7) 147 2.783559 0.297360E+09
LSP(8) 131 2.766524 0.237780E+09
LSP(9) 119 2.773156 0.194491E+09
LSP(10) 108 2.753372 0.162039E+09
LSP(11) 100 2.768554 0.137075E+09
LSP(12) 92 2.749427 0.117477E+09

Table 28: EXP10G, 256 × 256, CM-2

53



Method ITER TIMIT TIMFAC κ (Q−1A)
JACOBI 1321 1.115013 0.268204E+06
LJACX 486 1.843561 0.005377 0.372601E+05
LJACY 1006 15.899689 0.014382 0.256357E+06
SGS-RB 660 1.132196 0.670514E+05
LSP(1) 738 1.038555 0.838142E+05
LSP(2) 519 0.878806 0.413379E+05
LSP(3) 400 0.792000 0.246731E+05
LSP(4) 326 0.739092 0.164065E+05
LSP(5) 277 0.707879 0.117020E+05
LSP(6) 240 0.682811 0.876864E+04
LSP(7) 213 0.666675 0.681599E+04
LSP(8) 184 0.629086 0.545060E+04
LSP(9) 173 0.641342 0.445827E+04
LSP(10) 161 0.643122 0.371444E+04
LSP(11) 147 0.629664 0.314250E+04
LSP(12) 136 0.621972 0.269320E+04

Table 29: EXP6G, 64 × 64, CM-2

54



Method ITER TIMIT TIMFAC κ (Q−1A)
JACOBI 3019 4.153633 0.104015E+07
LJACX 1117 4.910723 0.006466 0.148641E+06
LJACY 2493 16.413957 0.008647 0.990755E+06
SGS-RB 1513 4.932771 0.260038E+06
LSP(1) 1688 4.088706 0.325048E+06
LSP(2) 1186 3.714589 0.160316E+06
LSP(3) 917 3.523236 0.956866E+05
LSP(4) 748 3.405375 0.636271E+05
LSP(5) 630 3.316010 0.453817E+05
LSP(6) 546 3.262068 0.340056E+05
LSP(7) 471 3.149253 0.264329E+05
LSP(8) 424 3.136495 0.211374E+05
LSP(9) 387 3.138364 0.172891E+05
LSP(10) 356 3.140775 0.144044E+05
LSP(11) 327 3.117821 0.121862E+05
LSP(12) 304 3.115445 0.104439E+05

Table 30: EXP6G, 128 × 128, CM-2

Method ITER TIMIT TIMFAC κ (Q−1A)
JACOBI 6360 20.573390 0.408818E+07
LJACX 2429 20.323387 0.009799 0.592625E+06
LJACY 5970 74.263136 0.015418 0.388665E+07
SGS-RB 3180 27.229709 0.102205E+07
LSP(1) 3534 20.872168 0.127756E+07
LSP(2) 2483 20.013009 0.630102E+06
LSP(3) 1908 19.487973 0.376084E+06
LSP(4) 1556 19.245263 0.250077E+06
LSP(5) 1313 19.070163 0.178366E+06
LSP(6) 1133 18.898701 0.133654E+06
LSP(7) 999 18.817947 0.103890E+06
LSP(8) 894 18.767765 0.830773E+05
LSP(9) 809 18.728504 0.679516E+05
LSP(10) 738 18.677312 0.566135E+05
LSP(11) 680 18.676897 0.478953E+05
LSP(12) 625 18.515675 0.410475E+05

Table 31: EXP6G, 256 × 256, CM-2

55


