
Computers & Geosciences Vol. 17. No. I, pp. 1-21, 1991 0098-3004/91 $3.00 + 0.00
Printed in Great Britain. All rights reserved Copyright © 1991 Pergamon Press pie

VARIATM--A FORTRAN PROGRAM FOR
OBJECTIVE ANALYSIS OF PSEUDOSTRESS WIND FIELDS

USING LARGE-SCALE CONJUGATE-GRADIENT
MINIMIZATION

DAVID M. LEGLER ~ and I. M. NAVON 2

t Mesoscale Air-Sea Interaction Group, Mail Stop B-174, 012 Love, Florida State University, Tallahassee,
FL 32306-3041 and 2Department of Mathematics and Supercomputer Computations Research Institute,

Florida State University, Tallahassee, FL 32306-4052, U.S.A.

(Received 28 February 1989; revised 7 March 1990)

Abstraet--A FORTRAN computer program is presented and documented which implements a new
approach to objective analysis of pseudostress data over the Indian Ocean. (A pseudostress vector is
defined as the wind components multiplied by the wind magnitude.)

This method is a direct large-scale minimization approach of a cost functional expressed as a
weighted sum of lack of fit to data as well as constraints on proximity to original observations and
climatology, on a smoothing parameter and on kinematic equivalence to climatological patterns. Each
of the constraints was weighted by selected coefficients controlling how closely the minimizing analysis
fits each type of data or constraint.

The functional operates on 7330 variables (i.e. two wind components at each grid location) and was
minimized using a highly efficient memoryless quasi-Newton-like conjugate-gradient method. Use of an
independent subjective analysis of the same data provide for a direct quantitative comparison and confirm
the adequacy of the objective analysis. This scheme now has been adopted operationally to generate
monthly average pseudostress wind values on a l°-grid over the Indian Ocean.

Key Words: Unconstrained minimization, Objective analysis, Wind Stress, Variational techniques,
Indian Ocean.

INTRODUCTION

The variational analysis method allows us to combine
information originating from a variety of sources by
minimizing the lack of fit to the various sources.

Variational analysis methods for objective analysis
of meteorological fields were proposed first by
Sasaki (1955, 1958). Variational analysis methods
also were used by Holl and Mendenhall (1971) and
Holl, Cuming, and Mendenhall (1979) for blending
meteorological fields.

Hoffman (1982, 1984) used a direct minimization
technique to remove aliasing ambiguity of the
SEASAT satellite scatterometer winds.

In this paper, we present the code used to produce
monthly average pseudostress values on a I t mesh
over the entire Indian basin, 30°S-28°N, 30°E-120°E.

Pseudostress is defined as the magnitude of the
wind times its components, that is

 x=ulvl, .,=vlvl (l)
where u and v are the eastward and northward
components of the wind respectively, and V is the
wind magnitude.

In our approach here, based on work of Legler,
Navon, and O'Brien (1989) and Navon and Legler
(1987) we use a variational analysis method to mini-
mize an objective cost functional F, which is a

measure of various lacks of fit. The definition of the
cost functional, F, is problem dependent and involves
knowledge about the nature of the expected error of
the data. A proper specification of the cost functional
which is defined as a weighted sum of lack of fits
to data and constraints is essential for obtaining a
satisfactory solution of the objective analysis prob-
lem. The results have been used in forcing the ocean
circulation model of Luther and O'Brien (1985) for
the years 1977-1985. Results from this ocean model
from the fall of 1985 have been validated by compar-
ing them to collocated U.S. Navy bathythermograph
and NOAA satellite data (Simmons and others,
1988).

The outline of this paper is the following. The
data used and the variational cost function, F, are
described in the first section of this paper. The
CONMIN conjugate-gradient method used for carry-
ing out the unconstrained minimization is detailed in
the second section of the paper. The final section is
devoted to the VARIATM program code and its
implementation with real data sets for the Indian
Ocean.

COST FUNCTIONAL

The purpose of the analysis is to obtain a high-
quality monthly average representation of the winds

I
CAGEO 171--A

2 D.M. LEGLER and I. M. NAVON

over the Indian Ocean regime. In this study, the only
information available will be (a) ship report averages
on a l ° resolution mesh and (b) a 60-yr pseudostress
climatology based on Hellerman and Rosenstein
(1983) which was formed by averaging 60 yr of ship
wind reports into calendar month means. The ship
reports are averaged into boxes in the following way,
all the ship wind observations for the analysis month
as reported from merchant ships as well as from
scientific cruises and meteorological buoys are first
collected and screened for incorrect values (Fig. l).
Typically < 2 % of the observations are removed in
these schemes. The remaining observations (typically
about 10,000-20,000 observations in the region of
interest) then are converted to pseudostress and
filtered according to expected means. The resulting
data are averaged within each 1 ~ square and any data
voids are filled using simple bilinear interpolation.

The first step in implementing direct minimization
is designing the cost functional which will be mini-
mized. It will be a measure of lack of fit of the
data according to certain prescribed conditions which
may be dynamically or statistically motivated. We
know from climatology the wind pattern should be
"smooth". Thus some measure of roughness and
some measure of lack of fit to climatology should be
included in the cost functional.

The key ingredients in our objective scheme are the
inclusion of two kinematic constraints into the cost
functional to be minimized. We choose to require the

analysis to be similar to the curl and divergence of the
climatology as well as to the climatology itself.

The cost functional. F. which is used to determine
objectively derived monthly maps of pseudostress is
defined as follows:

.: +..o>, +.,-.,.o,:i

+ L'X Z ZI(V'U< - ~ 0) '

+ (v:(.~, - %)) -] + /~ y_., y__, IV .('~ - ~°)]~

+ ~ ~ ,Y_., [f t . v x (,~ - ,~)]' (2)

where z , , z.,. are the resultant eastward and northward
pseudostress components; rxo, % are the components
of the l : mean values determined by the ship wind
reports; z~o, r,0 are the components of the pseudo-
stress climatology; z, z¢ are the resultant and clima-
tology pseudostress vectors respectively; and L is a
length scale (chosen to be I : la t) which makes all
terms uniform dimensionally, and scales them to the
same order of magnitude. The coefficients (actually
weights) p, 7, 2, 3, and a control (i.e. they weight the
component of the penalty function) how closely the
direct minimization fits each constraint (lack of fit).

\

~ ~ : ¢ . s , _ . - ' :=:\ 2 / ; # ~ 1 ,_.w. :(; M ~ ; ~ / ~ { . : z

. / / x 4 , / ÷," - " _ "-. %. 3~ ~, \ £ , ~

,:./.:2-:i.".::-;i.'.-.:::7:;;--:!;7t.-'.-:i:) . .
\ x: . . > . " "... - ' ~ . ~

/

I t 1 I t []] I I

30E ~OE 50E 60E 70E 8OE 90E i OOE t 10E 120E

Figure I. Marine wind observations (first converted to pseudostress--see text) during December 1988 are
shown here after being filtered and binned on I grid. Data void regions indicate there were missing

observations in those locations. Vector lengths indicate magnitude.

25N

20N

ISN

ION

5N

0

- 5S

I0S

155

20S

25S

30S

Objective analysis of pseudostress wind fields 3

The first term of the functional expresses the
proximity to the original (input) data. Because one of
the weights is arbitrary, in this study we shall set p to
unity. The second term is concerned with the close-
ness of fit to the climatological value for that month.
A higher value of its corresponding weight leads to
a closer approximation to the climatological value.
The third term is a measure of the data roughness,
and controls the "radius of influence" of an anomaly

75E

in the input winds or in the climatological values.
It can be termed a "smoothing term" or a "penalty
function".

The last two terms are the boundary layer kinematic
terms. They force the results to be comparable with
climatology, but not in the direct sense. They control
the degree to which the divergence and curl of the
resulting vector field approximate the kinematics of
the climatology. The five terms of the cost functional

PSEUDO STRESS VECTOR5 ~ s "
JULY 1984 BINNED RAW l~'[l~ so

T T

- - 4

9

4

+ \

~N

5~

BSE

A

~LY tgB~
P,SE:UOB STRESS VECTI~S e o ' ~ s "

I WTERP~LRTED WIN{]~

7" .,~ ~ -,+ --+ / ' +I>,

-) +..% ..~ .+ + +

~E

Kx

BSE

B

JULY t98~
PSEUD8 STRESS VECTBRS

HINIMI.TJ~I~N RESULTS

~p

75E

- - ~ - -~ - -~ - -4 - - ~ ~ . ~ 9 ~ . ~

"h 7" 7, "A .a ..~ ~, ~ . -~

"i '~ "~ ~" + +," +" :'+

-0

• 55

BOE B5E 75E

C

JULY L984

1

PSEUDO STRESS VECTOR5 8o "-:-~ s"
DIFF RESULTS-BI NNED

60E

Figure 2. Four stages of data analysis in sample region for July 1984. A--Filtered and binned pseudostress
values: B-Mata field after interpolation has been applied to fill data-void regions; C--results of variational
analysis using VARIATM; D--vector difference: minimization results (Fig. 2C)--binned data field

(Fig. 2A).

2 '

$N

F

\
k

4-

0

6--- . . ._

8SE

D

4 D.M. LEGLER and 1. M. NAVON

address some of the possible constraints. Other possi-
bilities include time evolution constraints, kinetic
energy constraints, pressure gradient terms.

The process of calculating the results is demon-
strated in Figures 2 and 3. A selected region in the
Indian Ocean is shown in detail in Figure 2A, the ship
wind reports have been averaged into 1 : boxes, thus
some boxes have no data. These voids are filled using
bilinear interpolation (Fig. 2B). The result of the
minimization (Fig. 2C) and the difference between
Figures 2C and 2A (Fig. 2D) indicate satisfactory and
expected results.

The manner of selecting the optimal weights for
each lack of fit is not addressed in this paper. From
experimental results in Legler, Navon, and O'Brien
(1989), small variations in the weights for the
derivative terms (smoothness, divergence, and curl)
had little effect on the results. The second weight, 7,
was critical, for it balanced the overall magnitude of
the results between the climatological norms and
the ship reports (usually of larger magnitude). The
weights can be thought of as empirically determined
tuning parameters. These weights could be selected
by objective means: in theory the method of general-
ized cross validation (Wahba and Wendelberger,
1980) could be used, but the computation would be
impractical with this size data set. In addition, cross
validation requires "valid" data, something which is
difficult to assess. The adjoint model optimal control
technique (Cacuci, 1981; Hall and Cacuci, 1983;
LeDimet and Talagrand, 1986; Talagrand, 1985) can

aid in a sensitivity study of the critical tuning par-
ameters. None of these objective methods could tell
us what the "correct" values of the weights should be
because the "correct" solution is not known. Instead,
in this study comparisons to independent analyses
were used to determine appropriate values (Legler,
Navon, and O'Brien, 1989).

Only the 3665 points located over the ocean were
included in the direct minimization process, and
because a z~ and a % must be varied at each point,
the cost functional included a total of N = 7330
variables.

CONJUGATE GRADIENT LARGE-SCALE
UNCONSTRAINED MINIMIZATION

The conjugate gradient method for solving large-
scale unconstrained, nonlinear minimization prob-
lems has been shown to be efficient both from the
computational complexity viewpoint as well from the
storage requirements viewpoint (Navon and Legler,
1987). The subroutine CONJ is a modified version
of the Beale restarted memoryless quasi-Newton
algorithm developed by Shanno (1978a, 1978b) and
documented by Shanno and Phua (1980).

The methods requires 7N single/double precision
words of working storage and offers the option of
two methods for determining the local minimum of
a function of N variables: (a) a limited-recovery Beale
(1972) restarted quasi-Newton-like conjugate-gradient
algorithm and (b) a Broyden-Fletcher-Goldfarb--

l l I l I l ~ [l l

30E ~OE 50E 60E ?OE 80E 90E IOOE i IOE 120E

Figure 3. Results of variational analysis using VARIATM for December 1988. Contours of equal
magnitude are drawn with contour interval o f 3 0 m 2 sec -2. Vectors with magnitude > 75 m 2 sec -2 are

truncated to 75 m 2 sec -2.

25N

20N

ISN

ION

5N

0

5S

IOS

15S

20S

25S

30S

Objective analysis of pseudostress wind fields 5

Shanno (BFGS) (Luenberger, 1984, p. 268) quasi-
Newton method which requires the storage of the
Hessian (N x N) matrix of the objective func t ion- -
an option which is not feasible for large-scale
problems because of memory limitations.

The different steps implementing CONJG are the
following:

(i) Initialization

The first-guess field, Xo = (UH UN~N, V I I

V~,.,u) ~, (pseudostress) and an initial guess of the
Hessian matrix; H0 = I (the unit matrix) are input to
the routine. (It only stores vector updates to the
matrix but never the matrix itself.)

Compute

f~ = f (x ~)

g~ = g(Xk) = Vf(X~). (3)

CONJG set the initial search direction, Sa., in the
direction of steepest descent

S~ = - g , . (4)

(iO Determination of the step-size

In this step an inexact linear search procedure (see
Shanno and Phua. 1980) is implemented.

The basic linear search uses Davidon's (1959) cubic
interpolation to determine an optimal step-size ~t,
which satisfies the following two conditions:

f (X~ + ~qS~.) <~J'(X~) + 0.000t~S~g~ (5)

I s~.gCV~ + ~ &)/S[g~ I < 0.9. (6)

(iii) Test for convergence

Update X~ by

[~ +, = f (Xa + t)

g~+l = g('¥~+ I)

p~ = X~ + l - X~

)'~ = g ~ * I - g k (7)

where

X~ = current point estimate of the minimum
gk = gradient vector evaluated at the current

point
& = current search direction

X~ + ~ = new estimate point of the minimum
gk + ~ = the gradient evaluated at X = X~ +

S, = the Beale restart search direction
y, = The Beale restart gradient difference vector

y, = g,+ ~ -- g,.

(it') PerJbrm the Beale restart according to the Powell
(1977) criteria

As we work with a nonlinear problem, there is
a loss of conjugacy and the convergence of the

conjugate-gradient algorithm slows down unless
restarted every N, where N is the number of com-
ponents in the vector X, steps in the direction of
steepest descent Sk = -gk - Powell (1977) proposed to
use Beale's (1972) restart method whenever

(a) The conjugate gradient iteration k is a multiple
of N and/or

(b) I g~+, g* I/> 0.2 [] gk +, I[2 (8)

where II I[is the Euclidean norm.
This method has been proven to be computation-

ally more efficient (Shanno, 1978a) if either of these
two conditions holds. Compute a restart search
direction by

?YxkYa PIg~,+L 7)'~g,+1]
S , + , = 7 g k + , - - I + PlYk PTYk ~ "JPk

YP~gk + 1
+ - -) 'k (9)

P~Y~

where

p Tk) ' k
?')'~)'k

one then gets p, = &, y, = Yk and goes to step (ii).

(v) Compute a new search direction using the 2-step
memoryless BFGS method (Shanno, 1978a)

T
= +Pk&-+ 1 l=Iv~ Sk+, --flkgk+~ ~ .

P k . '1,

y~Hkyk P~gk+l)'[l~Ikgk+,~n
- 1 + p:y-----~ Pl) 'k P~A'k j r * .

(10)

Here/ t~ is an approximation of the inverse Hessian
off , where only two rank-two matrix updates of the
initial H0 = I (unit matrix) are required, that is no
matrix storage, and the vectors/4kgk + ~ and /~k& are
defined by

pr). P~g~ +1
/ ~ ' g k ÷ ~ = ~ gk+l . r , Y'

. , . t) ~ .) ,

and

T ,T
+{P, gk+l) ,gk+l~ \ y ,y,)P'

T , , T
P, 3,//)kP, .l'k

(l l)

where .v, and p, are values obtained at a restart step.
In our algorithm convergence is determined to

have occurred if

lie II < Ilg011' (13)

where [III is the Euclidean norm and , is user
supplied. Here go is the initial gradient of the
functional f.

We need ~ = 10 -2 and for the present problem
CONJ converged within 20 iterations.

2p,~yk) : rye _
p y, (12)

D. M. LEGLER and I. M. NAVON

PROGRAM VARIATM

This program illustrates the use of the quasi-
Newton-like conjugate gradient method applied to
the problem of determining the unconstrained mini-
mum of the large scale cost functional F given a first
guess field, an appropriate climatology, and selected
weights. In the program V A R I A T M , the sequence of
events is to set some variables, read in the first guess
field, read in the climatology, then minimize the cost
functional by calling the main subroutine, VARY.
Upon return from VARY, the results are printed to
an output file. Diagnostic output is printed to a file
throughout the process.

The main program V A R I A T M sets memory space
aside for the arrays of x and y components of the
wind values. There are 94 locations in the east-west
direction and 58 in the nor th-south direction.
Because in this array there are locations over land
(where there are no wind reports) these locations have
as their values, 999. The array UV holds the results
of the current minimization in the iteration. The
array U V O contains the first guess field, and the array
UVC contains the climatology field.

To make use of this program, it will be necessary
to change the input files of course, and also the
subroutine F U N C T which evaluates the functional
as well as its gradient. The minimizer (a large-
scale unconstrained local minimization procedure,
usually a conjugate-gradient or l imited-memory
quasi-Newton) can be situated from any standard
mathematical package (the one used here has a
machine specific parameter, FACC, i.e. this accuracy
parameter F A C C indicates the smallest number for
which 1.000 + F A C C ~ 1.000). C O N J G was provided
courtesy of Shanno and Phua (1980).

Acknowledgments--Support for David M. Legler was pro-
vided by NOAA under grant NA84AA-D-00049 and under
JPL contract OT-2-3172-592. Support for 1. M. Navon was
provided by the Supercomputer Research Institute which is
supported by contract number DE-FC05-85ER250000 from
the Department of Energy. Many thanks to Rita Kuyper
who cheerfully typed the manuscript.

REFERENCES

Beale, E. M., 1972, A derivation of conjugate-gradients, in
Lootsma, F. A., ed., Numerical methods for non-linear
optimization: Academic Press, London, p. 39-43.

Cacuci, D. G., 1981. Sensitivity theory for non-linear
systems. I: Nonlinear functional analysis approach:
Jour. Math. Phys.. v. 22, no. 12, p. 2794-2802.

Davidon, W. C., 1959, Variable metric methods for mini-
mization: A.E.C., Research and Development Report
ANL-5990, Argonne National Laboratory, Argonne,
Illinois, November 1959, 27 p.

Hall, M. C. G., and Cacuci, D. G.. 1983, Physical interpret-
ation of the adjoint functions for sensitivity analysis of
atmospheric models: Jour. Atmos. Sei., v. 40, no. 10,
p. 2537-2546.

Hellerman, S., and Rosenstein, M., 1983, Normal monthly
wind stress over the world ocean with error estimates:
Jour. Phys. Ocean., v. 13, no. 7, p. 1093-1104.

Hoffman, R. N., 1982, SASS wind ambiguity removal
by direct minimization: Mon. Wea. Rev., v. t I0, no. 3,
p. 434--445.

Hoffman, R. N., 1984, SASS wind ambiguity removal by
direct minimization. Part II: Use of smoothness and
dynamical constraints: Mon. Wea. Rev., v. 112, no. 9,
p. 1829-1852.

Holl, M. M., Cuming, M. J., and Mendenhall, B. R., 1979,
The expanded ocean thermal-structure analysis system:
A development based on the fields by information
blending methodology: Final Report, MII Project M-
241 (Contract N00014-79-C-0236). (NTIS AD A076 534;
NASA 8N17661), unpaginated.

Holl, M. M., and Mendenhall, B. R., 1971, Fields by
information blending. Sea-level pressure version: Final
Report. Project M-167. Contract No. N66314-70-C-
5225. Fleet Numerical Weather Central-Meteorology
International Incorporated, Monterey, California, 6 p.

LeDimet, F. X., and Talagrand, O., 1986, Variational
algorithms for analysis and assimilation of meteoro-
logical observations: Theoretical aspects: Tellus, v. 38a,
no. 2, p. 97-I10.

Legler, D. M., Navon, I. M., and O'Brien, J. J., 1989,
Objective analysis of pseudo-stress over the Indian
Ocean using a direct minimization approach: Mon. Wea.
Rev., v. 117, no. 4, p. 709-720.

Luenberger, D. G., 1984, Linear and non-linear
programming (2nd ed.): Addison-Wesley, Reading,
Massachusetts, 491 p.

Luther, M. E., and O'Brien, J. J., 1985, A model of
the seasonal circulation in the Arabian Sea forced by
observed winds: Prog. Oceanog., v. 14, p. 353-385.

Navon, I. M., and Legler, D. M., 1987, Conjugate-gradient
methods for large-scale minimization in meteorology:
Mon. Wea. Rev., v, 115, no. 8, p. 1479-1502.

Powell, M. J. D., 1977, Restart procedures for the conjugate-
gradient method: Mathematical Programming, v. 12,
no. 3, p. 241-254.

Sasaki, Y. K.. 1955, A fundamental study of the numerical
prediction based on the variational principle: Jour.
Meteor. Soc. Japan. v. 33, no. 6, p. 262-275.

Sasaki, Y. K., 1958, An objective analysis based on the
variational method: Jour. Meteor. Soc. Japan, v. 36,
no. 3, p. 77 88.

Shanno, D. F., 1978a, Conjugate-gradient methods with
inexact searches: Math. Operations Res.. v. 3, no. 3,
p. 244-256.

Shanno, D. F., 1978b, On the convergence of a new
conjugate gradient method: SIAM Jour. Num. Anal.,
v. 15, no. 6. p. 1247-1257.

Shanno, D. F., and Phua, K. H., 1980, Remark on algor-
ithm 500--a variable method subroutine for uncon-
strained nonlinear minimization: ACM Trans. on
Mathematical Software, v. 6, no. 4, p. 618-622.

Simmons. R. C., Luther, M. E., O'Brien, J. J., and Legler,
D. M., 1988. Verification of a numerical ocean model of
the Arabian Sea: Jour. Geophys. Res.. v. 93, no. C12,
p. 15437 15454.

Talagrand, O., 1985, Application of optimal control to
meteorological problems, /n Sasaki, Y. K., ed.,
Variational methods in geosciences: Elsevier Science
Publ, Amsterdam, p. 13-28.

Wahba, G., and Wendelberger, J. 1980, Some new math-
ematical methods for variational objective analysis using
splines and cross-validation: Mon. Wea. Rev., v. 108,
no. 8, p. 1122 1143.

O~ective analysis of pseudostress wind fields

APPENDIX
Program L~tmg

PROGRAM variat

INTEGER ounit
CHARACTER resfil, fgfile,outfil,climfil

c
PARAMETER (resfil='variat.res',fgfile='aug88fg',outfil-'varyout',

+ climfil='climat.fil',wgtno=l.0,wgtpozl.07,nxi94,ny=58)

c
COMMON /bounds/spval,wgt(nx, ny),ounit

COMMON /data/uv(nx, ny,2),uvc(nx, ny,2),uvo(nx, ny,2),kount(nx,ny)
COMMON /params/rho,gcof,alpha,beta,phi,dx, dy, dl, iter, ifun
COMMON /spherc/clat(ny),radius

c
**

c

c this program reads in the monthly first guess data(tapel - first
c guess) and the monthly climatology(tape2) and submits it for

c the objective analysis scheme which will variate the winds

c to best fit the prescribed characteristics, the routine will

c use a conjugate gradient technique to find the minimun
c of the functional f.

c

c version 0.i legler 2-12-86

c version 3.0 version for publication in computers in geosciences

c version 4.0 version resubmitted to computers in geosciences

c 1-23-90

c
**

c clat is cosine of latitude bands (used in spherical coordinates)

c dl is the scaling length scale...

c dl is chosen arbitrarily

c dx, dy are spatial distance between two points ~n grid space
c ifun is number of function calls

c iter is the number of the iteration

c array kount holds the places where the gradient can be found.

c nx and ny are number of x and y direction grid points

c radius of earth (for spherical coordinates)

c spval is the special value indicating no data at this point

c the array uv holds the current results in the iterative process

c the array uvo holds the first guess wind field
c the array uvc holds the climatological wind field

c wgt is array of weights, value depends on the number of wind

c observations at each grid location

c n is the number of data points submitted to be varied

c

c set the multipliers here and also other necessary data

c

DATA one,onelev, othous/l.0,111.1,1000./

DATA tof/-31.5/

DATA two,oneS0/2.0,180.0/

c
:::::::::::::::::::::::::::::::::::::

c

c set parameters to be passed in common block

c

radius = 6.37e06

rho = 1.0

phi = 1.5

gcof = 2.0

alpha = 30.0

beta = 30.0

spval = 999.0

ounit = 6

c
::::::::::::::::::::::::::::::::::::

c

dx = one*onelev*othous
dy = dx

c

dl = one*dx
c

iter - -i

8 D . M . LEGLER and I. M. NAVON

raddeg m (asin(one)*two)/one80

DO I0 j - l,ny

clat(j) = cos((tof+float(j-l))*raddeg)

i0 CONTINUE

c
c open a file for collecting the diagnostic output

c
OPEN (ounit, file-outfil,status-'new',form-'fornu~tted')

c
WRITE (ounit,*) 'the coefficient for the diff to clim is ',phi

WRITE (ounit,*) 'the coefficient for the diff to orig obs is ',rho

WRITE (ounit,*) 'the coefficient for the smoothness is ',gcof

WRITE (ounit,*) 'the coefficient for the divg term is ',beta

WRITE (ounit,*) 'the coefficient for the vort term is ',alpha

c
c create output file for program results

c
OPEN (unit~4,file-resfil,status-'new',form-'unformatted ')

c

WRITE (4) rho,phi,gcof,alpha,beta

c

c ...
c make the units of each of the terms s**-2 so scale the
c appropriate terms by this distance scale dl which is

c initially set to 1 degrees

c
rho = rho/dl**2

c

phi = phi/dl**2

c
gcof = gcof*dl**2

c

c ...

c read in the first guess wind data

c
OPEN (unit=l,file=fgfile,status='old',form='unformatted')

c

READ (l,err=50) iyear,month

READ (l,err=50) uvo

READ (l,err=40) kount

c
CLOSE (i)

c ...

C

c if hobs is 1 or less then make weight of uv-uvo =wgtno otherwise wgtpo

c

DO 30 i = l,nx

DO 20 j = l,ny

wgt (i, j) = wgtpo

IF (kount(i,j).LE.l) wgt(i,j) = wgtno

20 CONTINUE
30 CONTINUE

c
WRITE (ounit,*) 'the year and month of this run are ',iyear,month

c

c ...

c read in the appropriate climatological month
c

OPEN (unit-2,file-climfil, status-'old',form~'unformatted')

c

c now read in the desired month's climatology
c

READ (2) monc,uvc
c

CLOSE (2)

c
c ..

c call the variational method main subroutine
c

CALL vary
c
c ...

c write out the results of the objective analysis

Objective analysis of pseudostress wind fields 9

c
WRITE (4) iyear,month
WRITE (4) uv,uvo,uvc

c

CLOSE (4)

c ...

STOP 'after successful run...'

c
c read error messages

c
40 CONTINUE

STOP 'after read error first guess data kount array'

50 CONTINUE
STOP 'after read error first guess data'

c

END

c

c

C

C
SUBROUTINE funcij(i,j,ifg)

INTEGER ounit

PARAMETER (nx=94,ny=58)
COMMON /bounds/spval,wgt(nx, ny),ounit

COMMON /data/uv(nx, ny,2),uvc(nx, ny,2),uvo(nx, ny,2),

+ kount (nx, ny)

c

c ...

c
c determine if at the location i,j the functional can be evaluated...

c

c i,j are the indices (location) in the array that are to be checked

c to see if the functional can be evaluated there

c ifg is a flag, it will have value 999 if the functional can be evaluated

c

c at point i, j

c

c

c

0 if the functional cannot be eval

ifg = 999

IF (uv(i,j,l) .EQ.spval) RETURN

IF (uv(i+l,j,l).EQ.spval) RETURN
IF (uv(i-l,j,l).EQ.spval) RETURN

IF (uv(i,j+l,l).EQ.spval) RETURN
IF (uv(i,j-l,l).EQ.spval) RETURN

ifg = 0

RETURN

END

c

C
SUBROUTINE funct (n,x, f,g)
INTEGER

REAL
PARAMETER

COMMON

COMMON
+

COMMON
+

COMMON

DIMENSION
EXTERNAL

c

c

ounit

uc,uh, flap,divg, vort

(nx=94, ny=58)

/bounds/spval, wgt (nx, ny) , ounit

/data/uv (nx, ny, 2) , uvc (nx, ny, 2) , uvo (nx, ny, 2) ,
kount (nx, ny)

/params/rho,gcof,alpha,beta,phi,d:.:,dy,dl, iter,
ifun

/spherc/clat (ny), r
x (n) , g (n)

uc, funcij,uh, flap, divg, vort

10 D.]%4. LEGLER and I. M. NAVON

c

c
c
c
c

c
c
c
c
c
c
c
c
c

this is the user supplied function for calculating the function
that is to be minimized and also the gradient of that function
at each point for input into subroutine conjg (a conjugate
gradient method for finding the minimum of a function...)

legler feb 18, 1986

n is the size of the single array that is the combined east-west and
north-south values of uv. in this case it is 7330.

x is array of current values of the resultant winds
g is array of gradient values
dell is angular distance between grid points

DATA one,two,one80/l.O,2.0,180.O/

raddeg = (asin(one)*two)/one80
dell = one*raddeg

n2 = n/2
nxm2 = nx - 2
nym2 = ny - 2

ny~l = nx - 1
nyml = ny - 1

iter = iter + 1

set the new values of winds into an array for computations,etc
the u components into the first half of the array

the v components into the last half of the array

the array x is the current values of the resultant winds
must put them back into the rectangular array for computing the

finite difference approximations

DO 20 i = l,nx
DO i0 j = l,ny

IF (kount(i,j).EQ.0) GO TO i0

c
uv(i, j, I) = x(kount (i, j))
uv(i,j,2) - x(kount(i,j)+n2)

I0 CONTINUE
20 CONTINUE

c
c calculate and sum up the function at all points

c
c the function is this: f-rho*sum(uv-uvo)**2+
c phi*sum(uv-uvc)**2+
c dl**4* gcof*sum(del**2(uv-uvc))**2+
c dl**2*alpha*sum(k dot del x(uv-uvc))**2+

c dl**2* beta*sum(del dot (uv-uvc))**2
c rho,phi,gcof,alpha,beta,dl are set constants
c uv is results, uvc is climatology,uvo is first guess
c del is operator, k is vertical component,dot is operator

c
c set the sum terms to 0: sc-sum climatology terms sm: sum laplacian
c terms, sd=sum of divergence terms, sv-sum of vorticity terms

c
sc = 0.0

sm = 0.0
sd = 0.0
sv = 0.0

DO 40 i m 2,n.~ml
DO 30 j ~ 2,nyml

can f be evaluated here at i,j ???
if so, then skip to the next grid point in space

Objective analysis of pseudostress wind fields I l

CALL funcij(i,j,ifg)
IF (ifg.EQ.999) GO TO 30

c
sc - sc + rho* (uh(i,j,l)**2+uh(i,j,2)**2+

+ two*uh (i, j, i) *uh (i, j, 2)) +
+ phi* (uc(i,j,l)**2+uc(i,j,2)**2+
+ two*uc(i,j,l)*uc(i,j,2))

sm = sm + gcof* (flap(uc, i,j,l,dell)**2+
+ flap(uc, i,j,2,dell)**2)

sd E sd + beta*divg(uc, i,j,dell)**2
sv = sv + alpha*vort(uc, i,j,dell)**2

c
30 CONTINUE
40 CONTINUE

c
c sum up the pieces of the functional

c
f = sc + sm+ sd + sv

c
c print out the values of the terms for this iteration

c
WRITE (ounit,*) 'this is for funct call ',iter
WRITE (ounit,*) 'sum of obs diff term ',sc
WRITE (ounit,*) 'sum of smoothness term ',sm
WRITE (ounit,*) 'sum of divergence term ',sd
WRITE (ounit,*) 'sum of vorticity term ',sv

c
c ...
c
c now compute the gradient of the function...

c
c uh is function to compute difference between current uv value and

c original (first-guess) value
c uc is function to compute difference between current uv value and
c climatological value
c flap computes the laplacian of the uc field
c divg computes the divergence of the uc field
c vort computes the vertical vorticity of the uc field

c
c ...
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

the gradient of f is made of two pieces, dg/du and dg/dv
after writing out all the finite difference approximations
for the function, then do the gradient computation.
for the gradient calculation as expressed in this code,
grid locations surrounding the point i, j have contributions to
the gradient at i,j. the pieces below represent those
contributions, for example, ull and ulla are the pieces from
the point i,j for dg/du, v01 is contribution of point

i-l,j for dg/dv, etc

compute dg/du at 3,3 then up to dg/du at 92,56 then for

the rest of the g values do dg/dv

note that each computation of dg/du and dg/dv requires a part
of five (5) evaluations of g

sum up the sum of squares of g (sg) to determine the norm of the grad

sg = 0.0

DO 60 i = 3,nz~n2
DO 50 j = 3,nym2

can the gradient be calculated here ??? (hint-check kount)
kount read in with first guess field... = number of obs at each point

IF (kount(i,j) .EQ.0) GO TO 50

do gradient dg/du at i, j

ull = 2.*rho* (uh(i,j,l)+uh(i,j,2)) +
2.*phi* (uc(i,j,l)+uc(i,j,2))

12 D . M . LEGLER and I. M. NAVON

ulla - 2.*gcof*flap(uc, i,j,l,dell)*
((-2./dell**2)+ (clat(j)/dell**2)*
(clat(j+l)* (-l.)-clat(j-l)))/ (r*clat(j))**2

u21 = 2.*gcof*flap(uc, i+l,j,l,dell)/dell**2/
(r*clat(j))**2

u21a - 2.*beta*divg(uc, i+l,j,dell)* (-i.)/
(2.*dell*r*clat (j))

u12 = 2.*gcof*flap(uc, i,j+l,l,dell)*clat(j+l)*clat(j)/
dell**2/ (r*clat(j+l))**2

ul2a = 2.*alpha*vort(uc, i,j+l,dell)*clat(j)/ (2.*dell)/
(r*clat(j+l))

u01 = 2.*gcof*flap(uc, i-l,j,l,dell)/ (dell*r*clat(j))**2
u01a = 2.*beta*divg(uc, i-l,j,dell)/ (2.*dell*r*clat(j))
ul0 - 2.*gcof*flap(uc,i,j-l,l,dell)*clat(j-l)*clat(j)/

dell**2/ (r*clat(j-l))**2
ul0a = 2.*alpha*vort(uc, i,j-l,dell)* (-l.)*clat(j)/

(2.*dell)/ (r*clat(j-l))

now do the dg/dv at i,j ...

vii = 2.*rho* (uh(i,j,2)+uh(i,j,l)) +
2.*phi* (uc(i,j,2)+uc(i,j,l)) +
2.*gcof*flap(uc, i,j,2,dell)*
((-2./dell**2)+ (clat(j)/dell**2)*
(clat(j+l)* (-l.)-clat(j-l)))/ (r*clat(j))**2

v21 = 2.*gcof*flap(uc, i+l,j,2,dell)/ (dell*r*clat(j))**2 +
2.*alpha*vort(uc, i+l, j,dell)* (-i.)/
(2. *dell*r*clat (j))

v12 ~ 2.*gcof*flap(uc, i, j+l,2,dell)*clat(j+l)*clat(j)/
(dell*r*clat(j+l))**2 + 2.*beta*divg(uc, i,j+l,dell)*
(-l.)*clat(j)/ (2.*dell*r*clat(j+l))

v01 = 2.*gcof*flap(uc, i-l,j,2,dell)/ (dell*r*clat(j))**2 +
2.*alpha*vort(uc, i-l,j,dell)/ (2.*dell*r*clat(j))

vl0 = 2.*gcof*flap(uc, i,j-l,2,dell)*clat(j-l)*clat(j)/
(dell*r*clat(j-l))**2 + 2.*beta*divg(uc, i,j-l,dell)*
clat(j)/ (2.*dell*r*clat(j-l))

add up all the pieces for the gradient of the u-component

g(kount(i,j)) = ull + ulla + u21 + u21a + u12 + ul2a +
u01 + u01a + ul0 + ul0a

now add up all pieces for the gradient of v component

g(kount(i,j)+n2) = vll+ v21 + v12 + v01 + vl0

calculate the norm

sg = sg + g(kount(i,j))**2 + g(kount(i,j)+n2)**2

50 CONTINUE
60 CONTINUE

print out the current value of the norm**2...sum(g**2)

WRITE (ounit, 9000) sg
c

9000 FORMAT (/ ' t h e no rm o f g r a d (sum o f t h e s q u a r e s o f g r a d) = ' , e l 0 . 3)
c

RETURN

END
c
c

SUBROUTINE printo(ier, f)
INTEGER ounit
PARA/METER (nx-94,nym58)
COMMON /bounds/spval,wgt(nx, ny),ounit
CHARACTER*40 message(5)

DATA message/

+

+

+

+

+

+

+
+

C

C

C

Objective analysis of pseudostress wind fields

'normal termination.., the final value of f is '

'gradient error check the final value of f is '

'search direction on uphill..the final vvalue of f is '

,'maxfn exceeded the final value of f is ',

'function not reducing..the final value of f is '
/

c

c
c ier is returned error code
c f is final value of the functional

c

c

c
IF (ier. EQ.0) WRITE (ounit, 9000) f,message(1)

IF (ier.EQ.129) WRITE (o u n i t , 9000) f , m e s s a g e (2)
IF (ier. EQ.130) WRITE (ounit, 9000) f,message(3)

IF (ier. EQ.l) WRITE (ounit,9000) f,message(4)

IF (ier. EQ.132) WRITE (ounit, 9000) f,message(5)

c
9000 FORMAT (e 1 2 . 3 , a 4 0)

c
RETURN

print out the appropriate error condition and final value of f

END

C

c
**

SUBROUTINE vary

INTEGER ounit

PARAMETER (nx=94,ny=58)
PARAMETER (n=7330)

COMMON /data/uv(nx, ny,2),uvc(nx, ny,2),uvo(nx, ny,2),kount(nx, ny)
COMMON /params/rho,gcof,alpha,beta,phi,dx, dy, dl, iter, ifun

COMMON /bounds/spval,wgt(nx, ny),ounit

DIMENSION g(n),x(n),w(6*n)

EXTERNAL funct

c

c

c

c this subroutine will actually call the minimizing routine which

c uses for now the conjugate gradient method subroutine conjg

c note the external function funct

c legler 2-21-86...

c

c

c facc is smallest number such that facc+l.0<>facc

c facc is machine dependent, change as necessary

c

facc = 1.0e-15
c

c

iunit = ounit

iout = 1

nw = 6*n

maxfn = 9
c

c

C!!!!!!!!!!![!!!!!!!!!!!!!!!!!!![!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!
C
c n is the size of the array to be varied
c x is the current values of the winds in a singularly dimensioned array

c f is array of the functional values

13

14 D . M . LEGLER and I. M. NAVON

c

c
c

c

c

c

c
c

c

c

c

c

c

c
c

c
c

c

c

I0

20

30
40

50

g is array of gradient values

iff is number of function calls made

ic number of iterations...

cacc is desired accuracy of the results

ier is returned error code

maxfn is maximum number of function calls allowed

w is array for working space (required to be 6*n) long
iout output desired ? (0=no, otherwise indicates output every iout

iteractions)
nw 6*n for dimension of the working space

iunit is output unit number

facc is estimate of machine accuracy

nmeth indicator for method set to 0 for c-g

dfpred initial step size reduction in the functional

set the x array(current results) to the first guess

x is array of current values of the resultant winds

uv holds the current (varied) values of the analysis

DO 40 i = l,nx
DO 30 j = l,ny

IF (kount(i, j) .EQ.0) GO TO i0

x(kount(i,j)) = uvo(i,j,l)

x(kount(i,j)+n/2) = uvo(i,j,2)

CONTINUE

now set the current results (in grid-space) to the first guess

DO 20 k = 1,2

uv(i,j,k) = uvo(i,j,k)

CONTINUE

CONTINUE

CONTINUE

in order to determine the desired 'accuracy' needed for the

conjugate-gradient to quit and return control to this subroutine,

initial values of the function and the norm of the gradient

are needed

CALL funct (n,x,f,g)

find the norm of g

sum = 0.0

DO 50 i = l,n

sum = sum + g(i)**2
CONTINUE

c

c

c

c set the accuracy desired (cacc), the initial decrease of f (dfpred)

c and the maximum calls allowed of subroutine funct (maxfn) ...

c

c!!!!!!!!!!!!!!!!!!!!!!!!!!!!!i!!!

C

acc = l.Oe-O2*sum
cacc = sqrt(acc)

dfpred = f/2.5
c

C!!!

c

C

CALL conjg(n,x, f,g, iff,ic, cacc, ier,maxfn, w, iout,nw, iunit, facc,
+ nmeth, funct,dfpred)

c

iter = ic

ifun = iff
c

c print out the meaning of the error code and the final f value

o 0 j e c u v e ana lyms ot p s e u u o s t r e s s w m a neJas 15

CALL printo(ier,f)

RETURN

END

c

FUNCTION uc(i,j, ixy)
INTEGER ounit

PARAMETER (nx-94,ny-58)

COMMON /bounds/spval,wgt(nx, ny),ounit

COMMON /data/uv (nx, ny, 2) , uvc (nx, ny, 2) , uvo (nx, ny, 2) ,
+ kount (nx, ny)

c

c ...

c

C

c

c

c
c

c

c

c

C

c

this is one of the difference operators which for location

i,j and component ixy finds the following value

uc=(current uv value - climatology uv value)*wgt

ixy is either 1 (east west component) or 2 (north-south component)

legler 2-19-86...

IF (uv(i,j,ixy).EQ.spval) STOP 'uv in tine uc is spval...'

uc = 0.
IF (uvc(i,j,ixy).EQ.999.) RETURN

uc = (uv(i,j,ixy)-uvc(i,j,ixy))*wgt(i,j)

RETURN

END

c

c

FUNCTION uh(i,j,ixy)

INTEGER ounit

PARAMETER (nx=94,ny=58)

COMMON /bounds/spval,wgt(nx, ny),ounit

COMMON /data/uv(nx, ny,2),uvc(nx, ny,2),uvo(nx, ny,2),
+ kount (nx, ny)

c

c ..

c
c this is one of the difference operators which for location

c i,j and component ixy finds the following value
c uh = current uv value - original observation value

c
¢ legler 2-19-86...

c ...

IF (uv(i,j,ixy).EQ.spval) STOP 'uv in tine uh is spval...'

uh = 0.
IF (uvo(i, j,ixy) .EQ.-999.) RETURN

uh = uv(i, j,ixy) - UvO(i, j,ixy)

RETURN

END
c
*

16 D . M . LEGLER and I. M. NAVON

FUNCTION divg(fun, i,j,dx)

REAL fun

PARAMETER (n x = 9 4 , n y = 5 8)
COMMON /spherc/clatlny),r

EXTERNAL fun

c
c

c

c this is the function to calculate the finite difference form of

c d i v e r g e n c e i n s p h e r i c a l c o o r d i n a t e s i n g r i d s p a c e , l e g l e r 9 - 2 6 - 8 6
c

c .
c

divg = i./ (r*clat(j)*2.*dx)* (fun(i+l,j,l)-fun(i-l,j,l)+

+ fun(i,j+l,2)*clat(j+l)-fun(i,j-l,2)*clat(j-l))

c

RETURN

END

c

c

FUNCTION flap(fun,i,j,ixy,dx)

REAL fun

PARAMETER (nx=94,ny=58)

COMMON / s p h e r c / c l a t (n y) , r
EXTERNAL fun

c

c ...

c

c this i s t h e f u n c t i o n t o c a l c u l a t e t h e l a p l a c i a n (s e c o n d o r d e r
c finite difference operator) at a point i,j for the ixy

c c o m p o n e n t w i t h t h e o p e r a t o r f u n .
c this fun operator is one of the difference operators

c uc (d i f f e r e n c e o f uv - c l i m a t) o r u h (d i f f o f uv - o r i g i n a l) .
c the involved values should not be special values since this is

c a function called only for those locations found by subroutine
c findn and stored in kount legler 2-19-86
c

c changed to reflect calculation in spherical coordinates
c l e g l e r 9 - 2 6 - 8 6
c
c .
c

flap = 11./ (r*clat(j)*dx)**2)* (fun li+l, j, ixyl -2 . *fun (i, j,ixy)+

+ fun(i-l,j,ixy)+clat(j)* (clat(j+l)* (fun (i, j+l, ixyl -fun (i,
+ j,ixy))-clat(j-l)* (fun(i, j,ixy)-fun(i, j-l,ixy))))

c

RETURN

END
c

c

c

FUNCTION vort (f u n , i , j , d x)
REAL fun

PARAMETER (nx=94,ny=58)

COMMON /spherc/clat(ny),r
EXTERNAL fun

c

c .

c

c function to calculate v o r t i c i t y i n s p h e r i c a l c o o r d i n a t e s
c legler 9-26-86
c

c .

c

vort = i./ (r*clat(j)*2.*dx)* (fun(i+l,j,2)-fun(i-l,j,2)-

+ fun(i,j+l,l)*clat(j+l)+fun(i,j-l,l)*clat(j-ll)
c

RETURN

END

Objective analysis of pseudostrcss wind fields 17

SUBROUTINE conjg(n,x,f,g, ifun, iter,eps,nflag, m xfun, w, iout,mdim,

+ idev,acc,nmeth,calcfg, f0)

DIMENSION x(n),g(n),w(mdim)

EXTERNAL calcfg

LOGICAL rsw

SUBROUTINE CONJG is provided by Shanno (see Shanno, D.F. and K.H. Phua

article: Remark on algorithm 500 a variable method subroutine for

unconstrained nonlinear minimization, ACM Transactions on

Mathematical Software, 1980, pp.618-622.)

alpha = I.

iter = 0

ifun = 0

ioutk = 0

nflag = 0

nx = n

ng= nx + n

IF (nmeth.EQol) GO TO I0

nry =ng + n

nrd = nry + n

ncons = 5*n

nconsl = ncons + 1

ncons2 = ncons + 2

GO TO 20

10 CONTINUE

ncons = 3*n

20 CONTINUE

CALL calcfg(n,x,f,g)

ifun = ifun + 1

nrst = n

rsw = .true.

dgl = 0.

xsq = O.
DO 30 i = l,n

w(i) = -g(i)

xsq = xsq + x(i)*x(i)

dgl = dgl - g(i)*g(i)

30 CONTINUE

dg = dgl

gsq = -dgl

if(gsq.le.eps*eps*amaxl(l.,xsq))return

new return criteria...

IF (gsq. LE.eps*eps) RETURN

40 CONTINUE

fmin = f

ncalls = ifun

IF (iout.EQ.0) GO TO 60

IF (ioutk.NE.0) GO TO 50

WRITE (idev, 9000) iter, ifun, fmin,gsq

50 CONTINUE

ioutk = ioutk + 1

IF (ioutk.EQ.iout) ioutk = 0

60 CONTINUE

alpha = alpha*dg/dgl

IF ((nrst.EQ.l) .OR. (nmeth.EQ.l)) alpha - I.

IF (rsw) alpha = abs(f0)/gsq

ap = 0.

fp = fmin

dp = dgl

dg = dgl

iter = iter + 1

step = 0.

DO 70 i = l,n

step = step + w(i)*w(i)

nxpi = nx + i

ngpi =ng + i

w(nxpi) = x(i)

w(ngpi) - g(i)

CAG£O 171--B

18 D. M, LEGLER and I. M. NAVON

70

80

90

I00

CONTINUE

step = sqrt(step)

CONTINUE
IF (alpha*step.GT.acc) GO TO 90

IF (.NOT.rsw) GO TO 20

nflag = 2

RETURN

CONTINUE

DO I00 i = l,n

nxpi = nx + i
x(i) = w(nxpi) + alpha*w(i)

CONTINUE

CALL calcfg(n,x,f,g)

ifun = ifun + 1
IF (ifun.LE.mxfun) GO TO Ii0

nflag = 1

RETURN

ii0 CONTINUE

dal = 0.0
DO 120 i = l,n

dal = dal + g(i)*w(i)

120 CONTINUE
IF (f.GT.fmin .AND. dal,LT.0.) GO TO 160

IF (f.GT. (fmin+.0001*alpha*dg) .OR.

+ abs(dal/dg).GT.0.9) GO TO 130

IF ((ifun-ncalls).LE.l .AND. abs(dal/dg).GT.eps .AND.

+ nmeth.EQ.0) GO TO 130

GO TO 170

130 CONTINUE
ul = dp + dal - 3.0* (fp-f)/ (ap-alpha)

u2 = ul*ul - dp*dal

IF (u2.LT.0.) u2 = 0.

u2 = sqrt(u2)
at = alpha - (alpha-ap)* (dal+u2-ul)/ (dal-dp+2.*u2)

IF ((dal/dp).GT.0.) GO TO 140

IF (at.LT. (l.01*aminl(alpha,ap)) .OR.

+ at.GT. (.99*amaxl(alpha,ap))) at = (alpha+ap)/2.0

GO TO 150

140 CONTINUE
IF (dal.GT.0.0 .AND. 0.0.LT.at .AND.

+ at.LT. (.99*aminl(ap, alpha))) GO TO 150

IF (dal.LE.0.0 .AND. atoGT. (l.01*amaxl(ap, alpha))) GO TO 150

IF (dal. LE.0.) at = 2.0*amaxl(ap, alpha)

IF (dal.GT.0.) at = aminl(ap, alpha)/2.0

150 CONTINUE

ap = alpha

fp = f

dp = dal

alpha = at

GO TO 8O

160 CONTINUE
alpha = alpha/3.

ap = 0.

fp = fmin

dp = dg

GO TO 80

170 CONTINUE

gsq = 0.0

xsq = 0.0

DO 180 i = l,n
gsq = gsq + g(i)*g(i)
xsq = xsq + x(i)*x(i)

180 CONTINUE
if(gsq.le.eps*eps*amaxl(l.0,xsq))return
IF (gsq. LE.eps*eps) RETURN

DO 190 i = l,n
w(i) = alpha*w(i)

190 CONTINUE

Objective analysis of pseudostress wind fields

IF (nmeth.EQ.l) GO TO 330

rtst = 0.

DO 200 i = l,n

ngpi =ng + i

rtst = rtst + g(i)*w(ngpi)
200 CONTINUE

IF (abs(rtst/gsq) .GT.0.2) nrst - n

IF (nrst.NE.n) GO TO 220

WRITE (idev,*) ' beale restart '

w(ncons+l) = 0.

w(ncons+2) = 0.

DO 210 i = l,n

nrdpi = nrd + i

nrypi = nry + i

ngpi =ng + i

w(nrypi) = g(i) - w(ngpi)

w(nrdpi) = w(i)

w(nconsl) = w(nconsl) + w(nrypi)*w(nrypi)

w(ncons2) = w(ncons2) + w(i)*w(nrypi)

210 CONTINUE

220 CONTINUE

ul = 0.0

u2 = 0.0

DO 230 i = l,n

nrdpi = nrd + i

nrypi = nry + i

ul = ul - w(nrdpi)*g(i)/w(nconsl)

u2 = u2 + w(nrdpi)*g(i)*2./w(ncons2) - w(nrypi)*g(i)/w(nconsl)

230 CONTINUE

u3 = w(ncons2) /w(nconsl)

DO 240 i = l,n

nxpi = nx + i

nrdpi = nrd + i

nrypi = nry + i

w(nxpi) = -u3*g(i) - ul*w(nrypi) - u2*w(nrdpi)

240 CONTINUE

IF (nrst.EQ.n) GO TO 300

250 CONTINUE

ul = 0.

u2 = 0.

u3 = 0.

u4 = 0.

DO 260 i = l,n

ngpi =ng + i

nrdpi = nrd + i

nrypi = nry + i

ul = ul - (g(i)-w(ngpi))*w(nrdpi)/w(nconsl)

u2 = u2 - (g(i)-w(ngpi))*w(nrypi)/w(nconsl) +

+ 2.0*w(nrdpi)* (g(i)-w(ngpi))/w(ncons2)

u3 = u3 + w(i)* (g(i)-w(ngpi))

260 CONTINUE

step = 0.

DO 270 i = l,n

ngpi =ng + i

nrdpi = nrd + i

nrypi = nry + i

step = (w(ncons2)/w(nconsl))* (g(i)-w(ngpi)) + ul*w(nrypi) +

+ u2*w (nrdpi)

u4 = u4 + step* (g(i)-w(ngpi))

w(ngpi) = step

270 CONTINUE

ul = 0.0

u2 = 0.0

DO 280 i = l,n

ul = ul - w(i)*g(i)/u3

ngpi = ng + i

u2 = u2 + (l.0+u4/u3)*w(i)*g(i)/u3 - w(ngpi)*g(i)/u3

280 CONTINUE

DO 290 i = l,n
ngpi =ng + i

nxpi = nx + i

w(nxpi) = w(nxpi) - ul*w(ngpi) - u2*w(i)

290 CONTINUE

300 CONTINUE

dgl = 0.

19

20 D.M. LEGLF.R and I. M. NAVON

310

DO 310 i = l,n

nxpi - nx + i

w(i) = w(nxpi)

dgl - dgl + w(i)*g(i)

CONTINUE

IF (dgl.GT.0.) GO TO 320

IF (nrst.EQ.n) nrst i 0

nrst = nrst + 1

rsw = .false.

GO TO 40

320 CONTINUE

nflag = 3

RETURN

330 CONTINUE

ul = 0.0

DO 340 i - l,n

ngpi = ng + i

w(ngpi) E g(i) - w(ngpi)

ul = ul + w(i)*w(ngpi)

340 CONTINUE

IF (.NOT.rsw) GO TO 380

u2 = 0.
DO 350 i = l,n

ngpi =ng + i

u2 = u2 + w(ngpi)*w(ngpi)

350 CONTINUE

ij = 1

u3 = ul/u2

DO 370 i = l,n

DO 360 j = l,n

nconsl - ncons + ij

w(nconsl) = 0.0

IF (i.EQ.j) w(nconsl) -u3

ij = ij + 1

360 CONTINUE

nxpi = nx + i

ngpi =ng + i

w(nxpi) = u3*w(ngpi)

370 CONTINUE

u2 = u3*u2

GO TO 430

380 CONTINUE

u2 = 0.0

DO 420 i = l,n

u3 = 0.

ij = i

IF (i.EQ.I) GO TO 400

ii = i - 1

DO 390 j = l,ii

ngpj =ng + j

nconsl = ncons + ij

u3 = u3 + w(nconsl)*w(ngpj)

ij = ij + n - j

390 CONTINUE

400 CONTINUE

DO 410 j z l,n

nconsl = ncons + ij

ngpj - ng+ j

u3 = u3 + w(nconsl)*w(ngpj)

ij = ij + 1
410 CONTINUE

ngpi - ng + i

u2 - u2 + u3*w(ngpi)
nxpi = nx + i
w(nxpi) - u3

420 CONTINUE

430 CONTINUE

u4 - 1.0 + u2/ul

DO 440 i - l,n

nxpi - nx + i

ngpi -ng + i

Objective analysis of pseudostress wind fields 21

w(ngpi) - u4*w(i) - w(nxpi)

440 CONTINUE

ij - i

DO 460 i - l,n

nxpi - nx + i

u3 - w(i)/ul

u4 - w(nxpi)/ul

DO 450 j - l,n

nconsl -ncons + ij

ngpj -ng + j
w(nconsl) g w(nconsl) + u3*w(ngpj) - u4*w(j)

ij - ij + 1

450 CONTINUE

460 CONTINUE

dgl = 0.0

DO 500 i = l,n

u3 - 0.0
ij - i

IF (i.EQ.I) GO TO 480
ii = i - 1
DO 470 j = l,ii

nconsl -ncons + ij

u3 = u3 - w(nconsl)*g(j)

i9 = ij + n - j
470 CONTINUE

480 CONTINUE

DO 490 j = l,n

nconsl = ncons + ij

u3 = u3 - w(nconsl)*g(j)

ij = i9 + 1

490 CONTINUE

dgl = dgl + u3*g(i)

w(i) = u3

500 CONTINUE

IF (dgl.GT.0.) GO TO 320

rsw = .false.

GO TO 40

9000 FORMAT (10H iteration, i5,20H

+ 13H g-squared - ,e15.8/)

function calls,i6/5H f = ,e15.8,

END

