VARIATM-A FORTRAN PROGRAM FOR OBJECTIVE ANALYSIS OF PSEUDOSTRESS WIND FIELDS USING LARGE-SCALE CONJUGATE-GRADIENT MINIMIZATION

David M. Legler ${ }^{1}$ and I. M. Navon ${ }^{2}$
${ }^{1}$ Mesoscale Air-Sea Interaction Group, Mail Stop B-174, 012 Love, Florida State University, Tallahassee, FL 32306-3041 and ${ }^{2}$ Department of Mathematics and Supercomputer Computations Research Institute, Florida State University, Tallahassee, FL 32306-4052, U.S.A.

(Received 28 February 1989; revised 7 March 1990)

Abstract

A FORTRAN computer program is presented and documented which implements a new approach to objective analysis of pseudostress data over the Indian Ocean. (A pseudostress vector is defined as the wind components multiplied by the wind magnitude.) This method is a direct large-scale minimization approach of a cost functional expressed as a weighted sum of lack of fit to data as well as constraints on proximity to original observations and climatology, on a smoothing parameter and on kinematic equivalence to climatological patterns. Each of the constraints was weighted by selected coefficients controlling how closely the minimizing analysis fits each type of data or constraint. The functional operates on 7330 variables (i.e. two wind components at each grid location) and was minimized using a highly efficient memoryless quasi-Newton-like conjugate-gradient method. Use of an independent subjective analysis of the same data provide for a direct quantitative comparison and confirm the adequacy of the objective analysis. This scheme now has been adopted operationally to generate monthly average pseudostress wind values on a 1°-grid over the Indian Ocean.

Key Words: Unconstrained minimization, Objective analysis, Wind Stress, Variational techniques, Indian Ocean.

INTRODUCTION

The variational analysis method allows us to combine information originating from a variety of sources by minimizing the lack of fit to the various sources.
Variational analysis methods for objective analysis of meteorological fields were proposed first by Sasaki (1955,1958). Variational analysis methods also were used by Holl and Mendenhall (1971) and Holl, Cuming, and Mendenhall (1979) for blending meteorological fields.

Hoffman $(1982,1984)$ used a direct minimization technique to remove aliasing ambiguity of the SEASAT satellite scatterometer winds.
In this paper, we present the code used to produce monthly average pseudostress values on a 1° mesh over the entire Indian basin, $30^{\circ} \mathrm{S}-28^{\circ} \mathrm{N}, 30^{\circ} \mathrm{E}-120^{\circ} \mathrm{E}$.

Pseudostress is defined as the magnitude of the wind times its components, that is

$$
\begin{equation*}
\tau_{x}=u|V|, \quad \tau_{y}=v|V| \tag{1}
\end{equation*}
$$

where u and v are the eastward and northward components of the wind respectively, and V is the wind magnitude.

In our approach here, based on work of Legler, Navon, and O'Brien (1989) and Navon and Legler (1987) we use a variational analysis method to minimize an objective cost functional F, which is a
measure of various lacks of fit. The definition of the cost functional, F, is problem dependent and involves knowledge about the nature of the expected error of the data. A proper specification of the cost functional which is defined as a weighted sum of lack of fits to data and constraints is essential for obtaining a satisfactory solution of the objective analysis problem. The results have been used in forcing the ocean circulation model of Luther and O'Brien (1985) for the years 1977-1985. Results from this ocean model from the fall of 1985 have been validated by comparing them to collocated U.S. Navy bathythermograph and NOAA satellite data (Simmons and others, 1988).

The outline of this paper is the following. The data used and the variational cost function, F, are described in the first section of this paper. The CONMIN conjugate-gradient method used for carrying out the unconstrained minimization is detailed in the second section of the paper. The final section is devoted to the VARIATM program code and its implementation with real data sets for the Indian Ocean.

COST FUNCTIONAL

The purpose of the analysis is to obtain a highquality monthly average representation of the winds
over the Indian Ocean regime. In this study, the only information available will be (a) ship report averages on a 1° resolution mesh and (b) a $60-\mathrm{yr}$ pseudostress climatology based on Hellerman and Rosenstein (1983) which was formed by averaging 60 yr of ship wind reports into calendar month means. The ship reports are averaged into boxes in the following way, all the ship wind observations for the analysis month as reported from merchant ships as well as from scientific cruises and meteorological buoys are first collected and screened for incorrect values (Fig. 1). Typically $<2 \%$ of the observations are removed in these schemes. The remaining observations (typically about $10,000-20,000$ observations in the region of interest) then are converted to pseudostress and filtered according to expected means. The resulting data are averaged within each 1^{*} square and any data voids are filled using simple bilinear interpolation.

The first step in implementing direct minimization is designing the cost functional which will be minimized. It will be a measure of lack of fit of the data according to certain prescribed conditions which may be dynamically or statistically motivated. We know from climatology the wind pattern should be "smooth". Thus some measure of roughness and some measure of lack of fit to climatology should be included in the cost functional.

The key ingredients in our objective scheme are the inclusion of two kinematic constraints into the cost functional to be minimized. We choose to require the
analysis to be similar to the curl and divergence of the climatology as well as to the climatology itself.

The cost functional, F, which is used to determine objectively derived monthly maps of pseudostress is defined as follows:

$$
\begin{align*}
F= & \frac{\rho}{L^{2}} \sum_{x} \sum_{y}\left[\left(\tau_{x}+\tau_{x_{0}}\right)^{2}+\left(\tau_{y}-\tau_{y_{0}}\right)^{2}\right] \\
& +\frac{\gamma}{L^{2}} \sum_{x} \sum_{y}\left[\left(\tau_{x}-\tau_{x_{c}}\right)^{2}+\left(\tau_{y}-\tau_{y_{c}}\right)^{2}\right] \\
& +L^{2} \lambda \sum_{x} \sum_{y}\left[\left(\nabla^{2}\left(\tau_{x}-\tau_{x_{c}}\right)\right)^{2}\right. \\
& \left.+\left(\nabla^{2}\left(\tau_{y}-\tau_{y_{c}}\right)\right)^{2}\right]+\beta \sum_{x} \sum_{y}\left[\nabla \cdot\left(\tau-\tau_{c}\right)\right]^{2} \\
& +\alpha \sum_{x} \sum_{y}\left[\hat{k} \cdot \nabla \times\left(\tau-\boldsymbol{\tau}_{\mathrm{c}}\right)\right]^{2} \tag{2}
\end{align*}
$$

where τ_{x}, τ_{y} are the resultant eastward and northward pseudostress components; $\tau_{x_{0}}, \tau_{y_{0}}$ are the components of the 1^{*} mean values determined by the ship wind reports; $\tau_{x_{0}}, \tau_{y_{0}}$ are the components of the pseudostress climatology; τ, τ_{c} are the resultant and climatology pseudostress vectors respectively; and L is a length scale (chosen to be I^{*} lat) which makes all terms uniform dimensionally, and scales them to the same order of magnitude. The coefficients (actually weights) $\rho, \gamma, \lambda, \beta$, and α control (i.e. they weight the component of the penalty function) how closely the direct minimization fits each constraint (lack of fit).

Figure I. Marine wind observations (first converted to pseudostress-see text) during December 1988 are shown here after being filtered and binned on 1 grid. Data void regions indicate there were missing observations in those locations. Vector lengths indicate magnitude.

The first term of the functional expresses the proximity to the original (input) data. Because one of the weights is arbitrary, in this study we shall set ρ to unity. The second term is concerned with the closeness of fit to the climatological value for that month. A higher value of its corresponding weight leads to a closer approximation to the climatological value. The third term is a measure of the data roughness, and controls the "radius of influence" of an anomaly
in the input winds or in the climatological values. It can be termed a "smoothing term" or a "penalty function".

The last two terms are the boundary layer kinematic terms. They force the results to be comparable with climatology, but not in the direct sense. They control the degree to which the divergence and curl of the resulting vector field approximate the kinematics of the climatology. The five terms of the cost functional

Figure 2. Four stages of data analysis in sample region for July 1984. A-Filtered and binned pseudostress values: B-data field after interpolation has been applied to fill data-void regions; C -results of variational analysis using VARIATM; D-vector difference: minimization results (Fig. 2C)-binned data field
(Fig. 2A).
address some of the possible constraints. Other possibilities include time evolution constraints, kinetic energy constraints, pressure gradient terms.

The process of calculating the results is demonstrated in Figures 2 and 3. A selected region in the Indian Ocean is shown in detail in Figure 2A, the ship wind reports have been averaged into 1° boxes, thus some boxes have no data. These voids are filled using bilinear interpolation (Fig. 2B). The result of the minimization (Fig. 2C) and the difference between Figures 2C and 2A (Fig. 2D) indicate satisfactory and expected results.

The manner of selecting the optimal weights for each lack of fit is not addressed in this paper. From experimental results in Legler, Navon, and O'Brien (1989), small variations in the weights for the derivative terms (smoothness, divergence, and curl) had little effect on the results. The second weight, γ, was critical, for it balanced the overall magnitude of the results between the climatological norms and the ship reports (usually of larger magnitude). The weights can be thought of as empirically determined tuning parameters. These weights could be selected by objective means: in theory the method of generalized cross validation (Wahba and Wendelberger, 1980) could be used, but the computation would be impractical with this size data set. In addition, cross validation requires "valid" data, something which is difficult to assess. The adjoint model optimal control technique (Cacuci. 1981; Hall and Cacuci, 1983; LeDimet and Talagrand, 1986; Talagrand, 1985) can
aid in a sensitivity study of the critical tuning parameters. None of these objective methods could tell us what the "correct" values of the weights should be because the "correct" solution is not known. Instead, in this study comparisons to independent analyses were used to determine appropriate values (Legler, Navon, and O'Brien, 1989).

Only the 3665 points located over the ocean were included in the direct minimization process, and because a τ_{x} and a τ_{r} must be varied at each point, the cost functional included a total of $N=7330$ variables.

CONJUGATE GRADIENT LARGE-SCALE UNCONSTRAINED MINIMIZATION

The conjugate gradient method for solving largescale unconstrained, nonlinear minimization problems has been shown to be efficient both from the computational complexity viewpoint as well from the storage requirements viewpoint (Navon and Legler, 1987). The subroutine CONJ is a modified version of the Beale restarted memoryless quasi-Newton algorithm developed by Shanno (1978a, 1978b) and documented by Shanno and Phua (1980).

The methods requires $7 N$ single/double precision words of working storage and offers the option of two methods for determining the local minimum of a function of N variables: (a) a limited-recovery Beale (1972) restarted quasi-Newton-like conjugate-gradient algorithm and (b) a Broyden-Fletcher-Goldfarb-

Figure 3. Results of variational analysis using VARIATM for December 1988. Contours of equal magnitude are drawn with contour interval of $30 \mathrm{~m}^{2} \mathrm{sec}^{-2}$. Vectors with magnitude $>75 \mathrm{~m}^{2} \mathrm{sec}^{-2}$ are truncated to $75 \mathrm{~m}^{2} \mathrm{sec}^{-2}$.

Shanno (BFGS) (Luenberger, 1984, p. 268) quasiNewton method which requires the storage of the Hessian ($N \times N$) matrix of the objective functionan option which is not feasible for large-scale problems because of memory limitations.

The different steps implementing CONJG are the following:

(i) Initialization

The first-guess field, $X_{0}=\left(U_{11}, \ldots, U_{N_{1} N}, V_{11}, \ldots\right.$, $\left.V_{N, N}\right)^{\top}$, (pseudostress) and an initial guess of the Hessian matrix; $H_{0}=I$ (the unit matrix) are input to the routine. (It only stores vector updates to the matrix but never the matrix itself.)

Compute

$$
\begin{align*}
& f_{k}=f\left(X_{k}\right) \\
& g_{k}=g\left(X_{k}\right)=\nabla f\left(X_{k}\right) \tag{3}
\end{align*}
$$

CONJG set the initial search direction, S_{k}, in the direction of steepest descent

$$
\begin{equation*}
S_{k}=-g_{k} . \tag{4}
\end{equation*}
$$

(ii) Determination of the step-size

In this step an inexact linear search procedure (see Shanno and Phua, 1980) is implemented.

The basic linear search uses Davidon's (1959) cubic interpolation to determine an optimal step-size α_{k} which satisfies the following two conditions:

$$
\begin{gather*}
f\left(X_{k}+\alpha_{k} S_{k}\right) \leqslant f\left(X_{k}\right)+0.0001 \alpha_{k} S_{k}^{\top} g_{k} \tag{5}\\
\left|S_{k}^{\top} g\left(X_{k}+x_{k} S_{k}\right) / S_{k}^{\top} g_{k}\right|<0.9 . \tag{6}
\end{gather*}
$$

(iii) Test for concergence

Update X_{k} by

$$
\begin{align*}
X_{k+1} & =X_{k}+x_{k} S_{k} \\
f_{k+1} & =f\left(X_{k+1}\right) \\
g_{k+1} & =g\left(X_{k+1}\right) \\
p_{k} & =X_{k+1}-X_{k} \\
y_{k} & =g_{k+1}-g_{k} \tag{7}
\end{align*}
$$

where
$X_{k}=$ current point estimate of the minimum
$g_{k}=$ gradient vector evaluated at the current point
$S_{k}=$ current search direction
$X_{k+1}=$ new estimate point of the minimum
$g_{k+1}=$ the gradient evaluated at $X=X_{k+1}$
$S_{t}=$ the Beale restart search direction
$y_{1}=$ The Beale restart gradient difference vector $y_{1}=g_{t+1}-g_{t}$.
(ii) Perform the Beale restart according to the Powell (1977) criteria

As we work with a nonlinear problem, there is a loss of conjugacy and the convergence of the
conjugate-gradient algorithm slows down unless restarted every N, where N is the number of components in the vector X, steps in the direction of steepest descent $S_{k}=-g_{k}$. Powell (1977) proposed to use Beale's (1972) restart method whenever
(a) The conjugate gradient iteration k is a multiple of N and/or
(b) $\left|g_{k+1}^{\mathrm{T}} g_{k}\right| \geqslant 0.2\left\|g_{k+1}\right\|^{2}$
where $\|\|$ is the Euclidean norm.
This method has been proven to be computationally more efficient (Shanno, 1978a) if either of these two conditions holds. Compute a restart search direction by

$$
\begin{align*}
S_{k+1}= & \gamma g_{k+1}-\left[I+\frac{\gamma y_{k}^{\top} y_{k}}{p_{k}^{\top} y_{k}} \cdot \frac{p_{k}^{\top} g_{k+1}}{p_{k}^{\top} y_{k}}-\frac{\gamma y_{k}^{\top} g_{k+1}}{p_{k}^{\top} y_{k}}\right] p_{k} \\
& +\frac{\gamma p_{k}^{\top} g_{k+1}}{p_{k}^{\top} y_{k}} y_{k} \tag{9}
\end{align*}
$$

where

$$
\gamma=\frac{p_{k}^{\mathrm{T}} y_{k}}{y_{k}^{\mathrm{T}} y_{k}} .
$$

one then gets $p_{i}=S_{k}, y_{t}=y_{k}$ and goes to step (ii).
(c) Compute a new search direction using the 2-step memoryless BFGS method (Shanno, 1978a)

$$
\begin{align*}
S_{k+1}= & -\hat{H}_{k} g_{k+1}+\frac{p_{k}^{\mathrm{T}} g_{k+1}}{p_{k}^{\mathrm{T}} y_{k}} \hat{H} y_{k} \\
& -\left(1+\frac{y_{k}^{\mathrm{T}} H_{k} y_{k}}{p_{k}^{\mathrm{T}} y_{k}} \cdot \frac{p_{k}^{\mathrm{T}} g_{k+1}}{p_{k}^{\mathrm{T}} y_{k}}-\frac{y_{k}^{\mathrm{T}} \hat{H}_{k} g_{k+1}}{p_{k}^{\mathrm{T}} y_{k}}\right) p_{k} \tag{10}
\end{align*}
$$

Here \hat{H}_{k} is an approximation of the inverse Hessian of f, where only two rank-two matrix updates of the initial $H_{0}=I$ (unit matrix) are required, that is no matrix storage, and the vectors $\hat{H}_{k} g_{k+1}$ and $\hat{H}_{k} g_{k}$ are defined by

$$
\begin{align*}
\hat{H}_{k} g_{k+1}= & \frac{p_{1}^{\top} y_{i}}{y_{i}^{\mathrm{T}} y_{i}} g_{k+1}-\frac{p_{1}^{\mathrm{T}} g_{k+1}}{y_{1}^{\mathrm{T}} y_{1}} y_{t} \\
& +\left(\frac{p_{1}^{\mathrm{T}} g_{k+1}}{p_{t}^{\mathrm{T}} y_{i}}-\frac{y_{1}^{\mathrm{T}} g_{k+1}}{y_{1}^{\top} y_{1}}\right) p_{t} \tag{11}
\end{align*}
$$

and

$$
\begin{equation*}
\hat{H}_{k} y_{k}=\frac{p_{i}^{\top} y_{1}}{y_{1}^{\top} y_{l}}\left(\frac{y_{k} p_{1}^{\top} y_{k}}{y_{i}^{\top} y_{1}} y_{i}+\frac{2 p_{i}^{\top} y_{k}}{p_{1}^{\top} y_{i}}-\frac{y_{1}^{\top} y_{k}}{y_{1}^{\top} y_{l}}\right) p_{i} \tag{12}
\end{equation*}
$$

where $y_{\text {, }}$ and $p_{\text {, }}$ are values obtained at a restart step.
In our algorithm convergence is determined to have occurred if

$$
\begin{equation*}
\|g\| \leqslant\left\|g_{0}\right\| \epsilon \tag{13}
\end{equation*}
$$

where $\|\|$ is the Euclidean norm and ϵ is user supplied. Here g_{0} is the initial gradient of the functional f.

We need $\epsilon=10^{-2}$ and for the present problem CONJ converged within 20 iterations.

PROGRAM VARIATM

This program illustrates the use of the quasi-Newton-like conjugate gradient method applied to the problem of determining the unconstrained minimum of the large scale cost functional F given a first guess field, an appropriate climatology, and selected weights. In the program VARIATM, the sequence of events is to set some variables, read in the first guess field, read in the climatology, then minimize the cost functional by calling the main subroutine, VARY. Upon return from VARY, the results are printed to an output file. Diagnostic output is printed to a file throughout the process.

The main program VARIATM sets memory space aside for the arrays of x and y components of the wind values. There are 94 locations in the east-west direction and 58 in the north-south direction. Because in this array there are locations over land (where there are no wind reports) these locations have as their values, 999. The array UV holds the results of the current minimization in the iteration. The array UVO contains the first guess field, and the array UVC contains the climatology field.
To make use of this program, it will be necessary to change the input files of course, and also the subroutine FUNCT which evaluates the functional as well as its gradient. The minimizer (a largescale unconstrained local minimization procedure, usually a conjugate-gradient or limited-memory quasi-Newton) can be situated from any standard mathematical package (the one used here has a machine specific parameter, FACC, i.e. this accuracy parameter FACC indicates the smallest number for which $1.000+$ FACC $\neq 1.000$). CONJG was provided courtesy of Shanno and Phua (1980).

Acknow'ledgments-Support for David M. Legler was provided by NOAA under grant NA84AA-D-00049 and under JPL contract OT-2-3172-592. Support for I. M. Navon was provided by the Supercomputer Research Institute which is supported by contract number DE-FC05-85ER250000 from the Department of Energy. Many thanks to Rita Kuyper who cheerfully typed the manuscript.

REFERENCES

Beale, E. M., 1972, A derivation of conjugate-gradients, in Lootsma, F. A., ed., Numerical methods for non-linear optimization: Academic Press, London, p. 39-43.
Cacuci, D. G., 1981, Sensitivity theory for non-linear systems. I: Nonlinear functional analysis approach: Jour. Math. Phys., v. 22, no. 12, p. 2794-2802.
Davidon, W. C., 1959, Variable metric methods for minimization: A.E.C., Research and Development Report ANL-5990, Argonne National Laboratory, Argonne, Illinois, November 1959, 27 p.
Hall, M. C. G., and Cacuci, D. G., 1983, Physical interpretation of the adjoint functions for sensitivity analysis of atmospheric models: Jour. Atmos. Sci., v. 40. no. 10, p. 2537-2546.

Hellerman, S., and Rosenstein, M., 1983, Normal monthly wind stress over the world ocean with error estimates: Jour. Phys. Ocean., v. 13, no. 7, p. 1093-1 104.
Hoffman, R. N., 1982, SASS wind ambiguity removal by direct minimization: Mon. Wea. Rev., v. 110, no. 3, p. 434-445.

Hoffman, R. N., 1984, SASS wind ambiguity removal by direct minimization. Part II: Use of smoothness and dynamical constraints: Mon. Wea. Rev., v. 112, no. 9, p. 1829-1852.

Holl, M. M., Cuming, M. J., and Mendenhall, B. R., 1979, The expanded ocean thermal-structure analysis system: A development based on the fields by information blending methodology: Final Report, MII Project M241 (Contract N00014-79-C-0236). (NTIS AD A076 534; NASA 8N17661), unpaginated.
Holl, M. M., and Mendenhall, B. R., 1971, Fields by information blending. Sea-level pressure version: Final Report. Project M-167. Contract No. N66314-70-C5225. Fleet Numerical Weather Central-Meteorology International Incorporated, Monterey, California, 6 p.
LeDimet, F. X., and Talagrand, O., 1986, Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects: Tellus, v. 38a, no. 2, p. 97-110.
Legler, D. M., Navon, I. M., and O'Brien, J. J., 1989, Objective analysis of pseudo-stress over the Indian Ocean using a direct minimization approach: Mon. Wea. Rev., v. 117, no. 4, p. 709-720.
Luenberger, D. G., 1984, Linear and non-linear programming (2nd ed.): Addison-Wesley, Reading, Massachusetts, 491 p .
Luther, M. E., and O'Brien, J. J., 1985, A model of the seasonal circulation in the Arabian Sea forced by observed winds: Prog. Oceanog., v. 14, p. 353-385.
Navon, I. M., and Legler, D. M., 1987. Conjugate-gradient methods for large-scale minimization in meteorology: Mon. Wea. Rev., v. 115, no. 8, p. 1479-1502.
Powell, M. J. D., 1977, Restart procedures for the conjugategradient method: Mathematical Programming, v. 12. no. 3, p. 241-254.
Sasaki, Y. K.. 1955, A fundamental study of the numerical prediction based on the variational principle: Jour. Meteor. Soc. Japan, v. 33, no. 6, p. 262-275.
Sasaki, Y. K., 1958, An objective analysis based on the variational method: Jour. Meteor. Soc. Japan, v. 36, no. 3, p. 77-88.
Shanno, D. F., 1978a, Conjugate-gradient methods with inexact searches: Math. Operations Res.. v. 3, no. 3, p. $244-256$.

Shanno, D. F., 1978b, On the convergence of a new conjugate gradient method: SIAM Jour. Num. Anal., v. 15, no. 6, p. 1247-1257.

Shanno, D. F., and Phua, K. H., 1980, Remark on algorithm 500-a variable method subroutine for unconstrained nonlinear minimization: ACM Trans. on Mathematical Software, v. 6, no. 4, p. 618-622.
Simmons. R. C., Luther, M. E.. O'Brien, J. J., and Legler, D. M., 1988. Verification of a numerical ocean model of the Arabian Sea: Jour. Geophys. Res.. v. 93. no. C12, p. 15437-15454.

Talagrand, O., 1985, Application of optimal control to meteorological problems, in Sasaki, Y. K., ed., Variational methods in geosciences: Elsevier Science Publ, Amsterdam, p. 13-28.
Wahba, G., and Wendelberger, J. 1980, Some new mathematical methods for variational objective analysis using splines and cross-validation: Mon. Wea. Rev., v. 108, no. 8. p. 1122-1143.

```
APPENDIX
Program Listing
PROGRAM variat
INTEGER ounit
CHARACTER resfil, fgfile, outfil, climfil
```

PARAMETER (resfil='variat.res',fgfile='aug88fg',outfil='varyout',

```
PARAMETER (resfil='variat.res',fgfile='aug88fg',outfil='varyout',
+
climfil='climat.fil',wgtno=1.0,wgtpo=1.07, nx=94,ny=58)
COMMON /bounds/spval, wgt (nx, ny), ounit
COMMON /data/uv(nx, ny, 2), uve (nx, ny, 2), uvo (nx, ny, 2), kount (nx, ny)
COMMON /params/rho,gcof,alpha,beta,phi,dx,dy,dl,iter,ifun
COMMON /spherc/clat(ny), radius
    this program reads in the monthly first guess data(tapel - first
    guess) and the monthly climatology(tape2) and submits it for
    the objective analysis scheme which will variate the winds
    to best fit the prescribed characteristics. the routine will
    use a conjugate gradient technique to find the minimun
    of the functional f.
    version 0.1 legler 2-12-86
    version 3.0 version for publication in computers in geosciences
    version 4.0 version resubmitted to computers in geosciences
                        1-23-90
    clat is cosine of latitude bands (used in spherical coordinates)
    dl is the scaling length scale...
    dl is chosen arbitrarily
    dx,dy are spatial distance between two points in grid space
    ifun is number of function calls
    iter is the number of the iteration
    array kount holds the places where the gradient can be found.
    nx and ny are number of }x\mathrm{ and }y\mathrm{ direction grid points
    radius of earth (for spherical coordinates)
    spval is the special value indicating no data at this point
    the array uv holds the current results in the iterative process
    the array uvo holds the first guess wind field
    the array uve holds the climatological wind field
    wgt is array of weights, value depends on the number of wind
        observations at each grid location
    n is the number of data points submitted to be varied
C*******************************************************************
    set the multipliers here and also other necessary data
    DATA one, onelev, othous/1.0,111.1,1000./
    DATA tof/-31.5/
    DATA two,one80/2.0,180.0/
c
C=========================================
    set parameters to be passed in common block
    radius = 6.37e06
    rho = 1.0
    phi = 1.5
    gcof = 2.0
    alpha = 30.0
    beta = 30.0
    spval = 999.0
    ounit = 6
c
c
    dy = one*onelev*othous
    dy = dy
c
    dl = one*dx
c
    iter = -1
```

```
c
C
```



```
c
c
c
c
c
c
c
c
c-
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
    20
    30 CONTINUE
    WRITE (ounit,*) 'the year and month of this run are ',iyear,month
c
c-
c
c
c
c
c
c
c
c
c------------------------------------------------------------------------------
c call the variational method main subroutine
c
    CALL vary
c
c----------------------------------------------------------------------------
c write out the results of the objective analysis
```



```
    this is the user supplied function for calculating the function
    that is to be minimized and also the gradient of that function
    at each point for input into subroutine conjg (a conjugate
    gradient method for finding the minimum of a function...)
    legler feb 18, 1986....
    n is the size of the single array that is the combined east-west and
    north-south values of uv. in this case it is 7330.
    x is array of current values of the resultant winds
    g is array of gradient values
    dell is angular distance between grid points
    DATA
                            one, two,one80/1.0,2.0,180.0/
    raddeg = (asin(one)*two)/one80
    dell = one*raddeg
    n2 = n/2
    nxm2 = nx - 2
    nym2 = ny - 2
    nxml = nx - 1
    nym1 = ny - 1
    iter = iter + I
    set the new values of winds into an array for computations,etc
    the u components into the first half of the array
    the v components into the last half of the array
    the array }x\mathrm{ is the current values of the resultant winds
    must put them back into the rectangular array for computing the
    finite difference approximations
    DO 20 i = 1,nx
            DO 10 j = 1,ny
                    IF (kount (i,j).EQ.0) GO TO 10
                    uv(i,j, 1)=x(kount (i,j))
            uv(i,j,2)=x(kount (i,j)+n2)
        CONTINUE
    CONTINUE
    calculate and sum up the function at all points
    the function is this: f=rho*sum(uv-uvo)**2+
                                    phi*sum(uv-uvc)**2+
                            dl**4* gcof*sum(del**2(uv-uvc))**2+
                            dl**2*alpha*sum(k dot del x(uv-uvc))**2+
                            dl**2* beta*sum(del dot (uv-uvc))**2
    rho,phi,gcof,alpha,beta,dl are set constants
    uv is results, uvc is climatology,uvo is first guess
    del is operator,k is vertical component,dot is operator
    set the sum terms to 0: sc=sum climatology terms sm: sum laplacian
        terms, sd=sum of divergence terms, sv=sum of vorticity terms
    sc}=0.
    sm}=0.
    sd}=0.
    sv}=0.
    DO 40 i = 2,n\timesml
        DO 30 j = 2,nym1
```

 can \(f\) be evaluated here at \(i, j\) ???
 if so, then skip to the next grid point in space
    ```
        CONTINUE
    CONTINUE
    sum up the pieces of the functional
    f}=sc+sm+sd+s
    print out the values of the terms for this iteration
    WRITE (ounit,*) 'this is for funct call',iter
    WRITE (ounit,*) 'sum of obs diff term ',sc
    WRITE (ounit,*) 'sum of smoothness term',sm
    WRITE (ounit,*) 'sum of divergence term ',sd
    WRITE (ounit,*) 'sum of vorticity term ',sv
```

c
c
the gradient of f is made of two pieces, dg/du and dg/dv
after writing out all the finite difference approximations
for the function, then do the gradient computation.
for the gradient calculation as expressed in this code,
grid locations surrounding the point i,j have contributions to
the gradient at i, j. the pieces below represent those
contributions. for example, ull and ulla are the pieces from
the point i, j for dg/du. vol is contribution of point
$i-1, j$ for $d g / d v$, etc
compute $d g / d u$ at 3,3 then up to $d g / d u$ at 92,56 then for
the rest of the g values do $\mathrm{dg} / \mathrm{dv}$
note that each computation of $d g / d u$ and $d g / d v$ requires a part
of five (5) evaluations of g
sum up the sum of squares of $g(s g)$ to determine the norm of the grad
$s g=0.0$
DO 60 i $=3, \mathrm{nym} 2$
DO $50 j=3$, nym2
can the gradient be calculated here ??? (hint-check kount)
kount read in with first guess field... = number of obs at each point
IF (kount (i,j).EQ.0) GO TO 50
do gradient dg/du at i, j
u11 $=2$.*rho* $(u h(i, j, 1)+u h(i, j, 2))+$
$+$
2.*phi* (uc(i,j,1)+uc(i,j,2))

```
    ulla=2.*gcof*flap(uc,i,j,1,dell)*
    ((-2./dell**2)+(clat(j)/dell**2)*
    (clat(j+1)* (-1.)-clat(j-1)))/ (r*clat(j))**2
        u21 = 2.*gcof*flap(uc,i+1,j,1,dell)/dell**2/
    (r*clat(j))**2
        u21a = 2.*beta*divg(uc,i+1,j,dell)* (-1.)/
            (2.*dell*r*clat(j))
        ul2 = 2.*gcof*flap(uc,i,j+1,1, dell)*clat(j+1)*clat(j)/
        dell**2/ (r*clat(j+1))**2
        u12a = 2.*alpha*vort(uc,i,j+1,dell)*clat(j)/ (2.*dell)/
        u01 = 2.*gcof*flap(uc,i-1,j,1,dell)/ (dell*r*clat(j))**2
        u0la = 2.*beta*divg(uc,i-1,j,dell)/ (2.*dell*r*clat(j))
        ul0=2.*gcof*flap(uc,i,j-1,1, dell)*clat(j-1)*clat (j)/
        dell**2/ (r*clat(j-1))**2
        ul0a = 2.*alpha*vort (uc,i,j-1, dell)* (-1.)*clat(j)/
            (2.*dell)/ (r*clat(j-1))
        now do the dg/dv at i,j ...
        v11 = 2.*rho* (uh(i,j, 2) +uh(i,j,1)) +
        2.*phi* (uc(i,j,2) +uc(i,j,1)) +
        2.*gcof*flap(uc,i,j,2,dell)*
        ((-2./del1**2)+ (clat(j)/dell**2)*
                (clat(j+1)* (-1.)-clat(j-1)))/ (r*clat(j))**2
        v21 = 2.*gcof*flap(uc,i+1,j,2,dell)/ (dell*r*clat(j))**2 +
        2.*alpha*vort (uc, i+1,j, dell)* (-1.)/
        (2.*dell*r*clat(j))
        v12 = 2.*gcof*flap(uc,i,j+1,2,dell)*clat(j+1)*clat (j)/
        (dell*r*clat (j+1))**2 + 2.*beta*divg(uc,i,j+1,dell)*
                (-1.)*clat(j)/ (2.*dell*r*clat(j+1))
        v01 = 2.*gcof*flap(uc,i-1,j,2,dell)/ (dell*r*clat(j))**2 +
                2.*alpha*vort(uc,i-1,j,dell)/ (2.*dell*r*clat(j))
        v10 = 2.*gcof*flap(uc,i,j-1,2,deli)*clat(j-1)*clat(j)/
        (dell*r*clat (j-l))**2 + 2.*beta*divg(uc,i,j-1,dell)*
        clat(j)/ (2.*dell*r*clat(j-1))
    add up all the pieces for the gradient of the u-component
        g(kount (i,j))=u11 +ulla +u21 +u21a +u12 + u12a +
                        u0l + u0la + ul0 + ul0a
    now add up all pieces for the gradient of v component
        g(kount (i,j)+n2)=v11 + v21 + v12 +v01 + v10
        calculate the norm
            sg=sg+g(kount (i,j))**2 + g(kount (i,j) +n2)**2
        CONTINUE
    CONTINUE
    print out the current value of the norm**2...sum(g**2)
    WRITE (ounit,9000) sg
9000 FORMAT (/'the norm of grad (sum of the squares of grad) = ', el0.3)
    RETURN
    END
c
c*
C
    SUBROUTINE printo(ier,f)
    INTEGER ounit
    PARAMETER (nx=94,ny=58)
    COMMON /bounds/spval,wgt (nx,ny),ounit
    CHARACTER*40 message(5)
    DATA
        message/
```

```
    'normal termination... the final value of f is '
    'gradient error check the final value of f is'
    ,
    'search direction on uphill..the final vvalue of f is '
    ,'maxfn exceeded the final value of f is',
    'function not reducing..the final value of f is,
    /
c
c-------
    print out the appropriate error condition and final value of f
    ier is returned error code
    f is final value of the functional
c
c
    IF (ier.EQ.0) WRITE (ounit,g000) f,message(1)
    IF (ier.EQ.129) WRITE (ounit,9000) f,message(2)
    IF (ier.EQ.130) WRITE (ounit,9000) f,message (3)
    IF (ier.EQ.1) WRITE (ounit,9000) f,message(4)
    IF (ier.EQ.132) WRITE (ounit,9000) f,message(5)
c
    9000 FORMAT (el2.3,a40)
C
    RETURN
    END
c
C
C**************************************************************************
c
c
    SUBROUTINE vary
    INTEGER ounit
    PARAMETER ( }\textrm{nx=94,ny=58)
    PARAMETER ( }n=7330
C
    COMMON /data/uv(nx, ny, 2), uvc (nx,ny,2), uvo (nx, ny,2), kount (nx, ny)
    COMMON /params/rho,gcof,alpha,beta,phi,dx,dy,dl,iter,ifun
    COMMON /bounds/spval,wgt(nx,ny),ounit
C
    DIMENSION g(n),x(n),w(6*n)
    EXTERNAL funct
c
C-------
    this subroutine will actually call the minimizing routine which
    uses for now the conjugate gradient method subroutine conjg
    note the external function funct
    legler 2-21-86...
c
```



```
c
c facc is smallest number such that facc+1.0<>facc
c
    facc is machine dependent, change as necessary
    facc}=1.0e-1
c
```



```
c
    iunit = ounit
    iout = 1
    nw = 6*n
    maxfn = 9
c
c
c!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
c
c n is the size of the array to be varied
c i is the current values of the winds in a singularly dimensioned array
c f is array of the functional values
```

c
c
c
c

```
```

```
c is array of gradient values
```

```
c is array of gradient values
    iff is number of function calls made
    iff is number of function calls made
    ic number of iterations...
    ic number of iterations...
    cacc is desired accuracy of the results
    cacc is desired accuracy of the results
    ier is returned error code
    ier is returned error code
    maxfn is maximum number of function calls allowed
    maxfn is maximum number of function calls allowed
    w is array for working space (required to be 6*n) long
    w is array for working space (required to be 6*n) long
    iout output desired ? ( }0=\mathrm{ no, otherwise indicates output every iout
    iout output desired ? ( }0=\mathrm{ no, otherwise indicates output every iout
        iteractions)
        iteractions)
    nw 6*n for dimension of the working space
    nw 6*n for dimension of the working space
    iunit is output unit number
    iunit is output unit number
    facc is estimate of machine accuracy
    facc is estimate of machine accuracy
    nmeth indicator for method set to 0 for c-g
    nmeth indicator for method set to 0 for c-g
    dfpred initial step size reduction in the functional
    dfpred initial step size reduction in the functional
    set the x array(current results) to the first guess
    set the x array(current results) to the first guess
    x is array of current values of the resultant winds
    x is array of current values of the resultant winds
    uv holds the current (varied) values of the analysis
    uv holds the current (varied) values of the analysis
    DO 40 i = 1,nx
    DO 40 i = 1,nx
        DO 30 j = 1,ny
        DO 30 j = 1,ny
            IF (kount(i,j).EQ.O) GO TO 10
            IF (kount(i,j).EQ.O) GO TO 10
            x(kount (i,j)) = uvo(i,j, 1)
            x(kount (i,j)) = uvo(i,j, 1)
            x(kount (i,j)+n/2)=uvo(i,j,2)
            x(kount (i,j)+n/2)=uvo(i,j,2)
            CONTINUE
            CONTINUE
    now set the current results (in grid-space) to the first guess
    now set the current results (in grid-space) to the first guess
        DO 20 k = 1,2
        DO 20 k = 1,2
                uv(i,j,k)=uvo(i,j,k)
                uv(i,j,k)=uvo(i,j,k)
        CONTINUE
        CONTINUE
        CONTINUE
        CONTINUE
    CONTINUE
    CONTINUE
    in order to determine the desired 'accuracy' needed for the
    in order to determine the desired 'accuracy' needed for the
    conjugate-gradient to quit and return control to this subroutine,
    conjugate-gradient to quit and return control to this subroutine,
    initial values of the function and the norm of the gradient
    initial values of the function and the norm of the gradient
    are needed
    are needed
    CALL funct ( }n,x,f,g
    CALL funct ( }n,x,f,g
    find the norm of g
    find the norm of g
    sum = 0.0
    sum = 0.0
    sum 50 i = 1,n
    sum 50 i = 1,n
    sum = sum + g(i)**2
    sum = sum + g(i)**2
    5 0 ~ C O N T I N U E
    5 0 ~ C O N T I N U E
c-.-----
c-.-----
    set the accuracy desired (cacc), the initial decrease of f (dfpred)
    set the accuracy desired (cacc), the initial decrease of f (dfpred)
    and the maximum calls allowed of subroutine funct (maxfn)...
    and the maximum calls allowed of subroutine funct (maxfn)...
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    acc = 1.0e-02*sum
    acc = 1.0e-02*sum
    cacc = sqrt(acc)
    cacc = sqrt(acc)
    dfpred = f/2.5
    dfpred = f/2.5
c!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
c!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    CALL conjg(n,x,f,g,iff,ic,cacc,ier,maxfn,w, iout,nw,iunit,facc,
    CALL conjg(n,x,f,g,iff,ic,cacc,ier,maxfn,w, iout,nw,iunit,facc,
    + nmeth,funct,dfpred)
    + nmeth,funct,dfpred)
    iter = ic
    iter = ic
    ifun = iff
    ifun = iff
```

 cacc = sqre(ace)
    ```
    cacc = sqre(ace)
    print out the meaning of the error code and the final f value
```

 print out the meaning of the error code and the final f value
    ```
```

 printo(ier,f)
 c
RETURN
END
c
C**
c
c
FUNCTION uc(i,j,ixy)
INTEGER ounit
PARAMETER (nx=94,ny=58)
COMMON /bounds/spval,wgt(nx,ny),ounit
COMMON /data/uv(nx,ny,2),uvc(nx,ny,2),uvo(nx, ny, 2),
+ kount (nx,ny)
c
c----------------------
this is one of the difference operators which for location
i,j and component ixy finds the following value
uc=(current uv value - climatology uv value)*wgt
ixy is either 1 (east west component) or 2 (north-south component)
legler 2-19-86...
c
c
IF (uv(i,j,ixy).EQ.spval) STOP 'uv in tine uc is spval...'
c
uc = 0.
IF (uvc(i,j,ixy).EQ.999.) RETURN
C
uc = (uv(i,j,ixy)-uvc(i,j,ixy))*wgt(i,j)
C
RETURN
END
c
c
C***
C
C
FUNCTION uh(i,j,ixy)
INTEGER ounit
PARAMETER (nx=94,ny=58)
COMMON /bounds/spval,wgt (nx,ny),ounit
COMMON /data/uv(nx,ny,2),uvc(nx,ny,2),uvo(nx,ny,2),
+ kount (nx,ny)
c----------------------
this is one of the difference operators which for location
i,j and component ixy finds the following value
uh = current uv value - original observation value
legler 2-19-86...
c----------------------
IF (uv(i,j,ixy).EQ.spval) STOP 'uv in tine uh is spval...'
uh = 0.
IF (uvo(i,j,ixy).EQ.-999.) RETURN
uh = uv(i,j,ixy) - uvo(i,j,ixy)
RETURN
END
c
C**

```
```

 FUNCTION divg(fun,i,j,dx)
 REAL fun
 PARAMETER (nx=94,ny=58)
 COMMON /spherc/clat(ny),r
 EXTERNAL fun
 c
c

this is the function to calculate the finite difference form of
divergence in spherical coordinates in grid space. legler 9-26-86
C
C----------
divg = 1./ (r**clat (j)*2.*dx)* (fun(i+1,j,1)-fun(i-1,j,i)+
+ fun(i,j+1,2)*clat (j+1)-fun(i,j-1,2)*clat(j-1))
RETURN
END
c
c
C***
c
c
FUNCTION flap(fun,i,j,ixy,dx)
REAL fun
PARAMETER (nx=94, ny=58)
COMMON /spherc/clat(ny),r
EXTERNAL fun
c
c-------
this is the function to calculate the laplacian (second order
finite difference operator) at a point i,j for the ixy
component with the operator fun.
this fun operator is one of the difference operators
uc (difference of uv - climat) or uh(diff of uv - original).
the involved values should not be special values since this is
a function called only for those locations found by subroutine
findn and stored in kount legler 2-19-86
changed to reflect calculation in spherical coordinates
legler 9-26-86
flap = (1./ (r*clat (j)*dx)**2)* (fun(i+1,j,ixy)-2.*fun(i,j,ixy)+
+ fun(i-1,j,ixy)+clat(j)* (clat(j+1)* (fun(i,j+1,i*y)-fun(i,
+ j,ixy))-clat(j-1)* (fun(i,j,ixy)-fun(i,j-1,ixy))))
RETURN
END
c
c
FUNCTION vort(fun,i,j,dx)
REAL fun
PARAMETER (nx=94,ny=58)
COMMON /spherc/clat(ny),r
EXTERNAL fun
c
c------------------
function to calculate vorticity in spherical coordinates
legler 9-26-86
c-----
c
vort = 1./ (r*clat (j)*2.*dx)* (fun(i+1,j,2)-fun(i-1,j, 2)-
+ fun(i,j+1,1)*clat(j+1)+fun(i,j-1,1)*clat(j-1))
c
RETURN
END

```
```

 SUBROUTINE conjg(n,x,f,g,ifun,iter,eps,nflag,mxfun,w,iout,mdim,
 + idev,acc,nmeth,calcfg,f0)
 DIMENSION }\quadx(n),g(n),w(mdim
 EXTERNAL calcfg
 LOGICAL rsw
 SUBROUTINE CONJG is provided by Shanno (see Shanno, D.F. and K.H. Phua
 article: Remark on algorithm 500 a variable method subroutine for
 unconstrained nonlinear minimization, ACM Transactions on
 Mathematical Software, 1980, pp.618-622.)
 alpha = 1.
 iter = 0
 ifun = 0
 ioutk = 0
 nflag = 0
 nx = n
 ng=nx}+
 IF (nmeth.EQ.1) GO TO 10
 nry = ng + n
 nrd = nry + n
 ncons = 5*n
 ncons1 = ncons + 1
 ncons2 = ncons + 2
 GO TO 20
 10 CONTINUE
ncons = 3*n
20 CONTINUE
CALL calcfg(n,x,f,g)
ifun = ifun + 1
nrst = n
rsw = .true.
dgl = 0.
xsq = 0.
DO 30 i = 1,n
w(i) = -g(i)
xsq = xsq + x(i)*x(i)
dg1 = dg1 - g(i)*g(i)
30 CONTINUE
dg = dgl
gsq = -dgl
if(gsq.le.eps*eps*amax1(1.,xsq))return
new return criteria...
IF (gsq.LE.eps*eps) RETURN
40 CONTINUE
fmin = f
ncalls = ifun
IF (iout.EQ.0) GO TO 60
IF (ioutk.NE.0) GO TO 50
WRITE (idev,9000) iter,ifun,fmin,gsq
50 CONTINUE
ioutk = ioutk + 1
IF (ioutk.EQ.iout) ioutk = 0
60 CONTINUE
alpha = alpha*dg/dgl
IF ((nrst.EQ.1) .OR. (mmeth.EQ.1)) alpha = 1.
IF (rsw) alpha = abs(f0)/gsq
ap=0.
fp = fmin
dp = dgl
dg = dgl
iter = iter + 1
step = 0.
DO 70 i = 1,n
step = step + w(i)*w(i)
nxpi = nx + i
ngpi = ng + i
w(nxpi) = x(i)
w(ngpi) = g(i)

```
```

70 CONTINUE
step = sqrt(step)
80 CONTINUE
IF (alpha*step.GT.acc) GO TO 90
IF (.NOT.rsw) GO TO 20
nflag=2
RETURN
90 CONTINUE
DO 100 i = 1,n
nxpi = nx + i
x(i) =w(nxpi) + alpha*w(i)
100 CONTINUE
CALL calcfg(n,x,f,g)
ifun = ifun + l
IF (ifun.LE.mxfun) GO TO 110
nflag = 1
RETURN
110 CONTINUE
dal = 0.0
DO 120i=1,n
dal = dal + g(i)*W(i)
120 CONTINUE
IF (E.GT.fmin .AND. dal.LT.0.) GO TO 160
IF (f.GT. (fmin+.0001*alpha*dg) .OR.
+ abs(dal/dg).GT.0.9) GO TO 130
IF ((ifun-ncalls).LE.1 .AND. abs(dal/dg).GT.eps .AND.
+ nmeth.EQ.O) GO TO 130
GO TO 170
130 CONTINUE
ul = dp + dal - 3.0* (fp-f)/ (ap-alpha)
u2 = u1*u1 - dp*dal
IF (u2.LT.O.) u2 = 0.
u2 = sqrt(u2)
at = alpha - (alpha-ap)* (dal+u2-u1)/ (dal-dp+2.*u2)
IF ((dal/dp).GT.0.) GO TO 140
IF (at.LT. (1.01*aminl(alpha,ap)) .OR.
+ at.GT. (.99*amaxl(alpha,ap))) at = (alpha+ap)/2.0
GO TO 150
140 CONTINUE
IE (dal.GT.O.0 .AND. 0.0.LT.at .AND.
+ at.LT. (.99*aminl(ap,alpha))) GO TO 150
IF (dal.LE.0.0 .AND. at.GT. (1.01*amax1(ap,alpha))) GO TO 150
IF (dal.LE.0.) at = 2.0*amaxl(ap,alpha)
IF (dal.GT.0.) at = aminl(ap,alpha)/2.0
150 CONTINUE
ap = alpha
fp=f
dp = dal
alpha = at
GO TO }8
160 CONTINUE
alpha = alpha/3.
ap = 0.
fp = fmin
dp = dg
GO TO }8
170 CONTINUE
gsq}=0.
xsq = 0.0
DO 180 i = 1,n
gsq = gsq + g(i)*g(i)
xsq = xsq + x(i)*x(i)
180 CONTINUE
c if(gsq.le.eps*eps*amaxl(1.0, xsq))return
IF (gsq.LE.eps*eps) RETURN
DO 190 i = 1,n
w(i) = alpha*w(i)
190 CONTINUE

```
```

 IF (nmeth.EQ.1) GO TO 330
 rtst = 0.
 DO 200 i = 1,n
 ngpi = ng + i
 rtst = rtst + g(i)*w(ngpi)
 200 CONTINUE
IF (abs(rtst/gsq).GT.0.2) nrst = n
IF (nrst.NE.n) GO TO 220
WRITE (idev,*) ' beale restart '
w(ncons+1) = 0.
w(ncons+2) = 0.
DO 210 i = 1,n
nrdpi = nrd + i
nrypi = nry + i
ngpi = ng + i
w(nrypi) = g(i) - w(ngpi)
w(nrdpi) = w(i)
w(ncons1) = w(ncons1) +w(nrypi)*w(nrypi)
w(ncons2) = w(ncons2) + w(i)*w(nrypi)
210 CONTINUE
220 CONTINUE
ul = 0.0
u2 = 0.0
DO 230 i = 1,n
nrdpi = nrd + i
nrypi = nry + i
ul = ul - w(nrdpi)*g(i)/w(nconsi)
u2 = u2 + w(nrdpi)*g(i)*2./w(ncons2) - w(nrypi)*g(i)/w(nconsl)
230 continue
u3 = w(ncons2)/w(ncons1)
DO 240 i = 1,n
nxpi = nx + i
nrdpi = nrd + i
nrypi = nry + i
w(nxpi) = -u3*g(i) - u1*w(nrypi) - u2*w(nrdpi)
240 CONTINUE
IF (nrst.EQ.n) GO TO 300
250 CONTINUE
ul = 0.
u2 = 0.
u3 =0.
u4 = 0.
DO 260 i = 1,n
ngpi = ng + i
nrdpi = nrd + i
nrypi = nry + i
ul = ul - (g(i)-w(ngpi))*w(nrdpi)/w(nconsl)
u2 = u2 - (g(i)-w(ngpi))*w(nrypi)/w(nconsl) +
2.0*w(nrdpi)* (g(i)-w(ngpi))/w(ncons2)
u3 = u3 + w(i)* (g(i)-w(ngpi))
260 CONTINUE
step = 0.
DO 270 i = 1,n
ngpi = ng + i
nrdpi = nrd +
nrypi = nry + i
step = (w(ncons2)/w(ncons1))* (g(i)-w(ngpi)) + ul*w(nrypi) +
u2*w(nrdpi)
u4 = u4 + step* (g(i)-w(ngpi))
w(ngpi) = step
270 CONTINUE
u1 = 0.0
u2 = 0.0
DO 280 i = 1,n
ul = ul - w(i)*g(i)/u3
ngpi = ng + i
u2 = u2 + (1.0+u4/u3)*w(i)*g(i)/u3 - w(ngpi)*g(i)/u3
280 CONTINUE
DO 290 i = 1,n
ngpi = ng + i
nxpi = nx + i
w(nxpi) = w(nxpi) - u1*w(ngpi) - u2*w(i)
290 CONTINUE
300 CONTINUE
dg1 = 0.

```

DO 310 i \(=1, n\)
        \(n \times p i=n x+i\)
        \(w(i)=w(n x p i)\)
        \(d g 1=d g 1+w(i) * g(i)\)

310 CONTINUE
IF (dg1.GT.0.) GO TO 320
IF (nrst.EQ.n) nrst \(=0\)
nrst \(=\) nrst +1
rsw = .false.
GO TO 40
320 CONTINUE
nflag \(=3\)
RETURN
330 CONTINUE
\(u 1=0.0\)
DO 340 i \(=1, n\) \(n g p_{i}=n g+i\) \(w(\) ngpi \()=g(i)-w(n g p i)\) \(u 1=u 1+w(i) * w(n g p i)\)
340 CONTINUE
IF (.NOT.rsw) GO TO 380
u2 \(=0\).
DO 350 i \(=1, n\) \(n g p_{i}=n g+i\) \(u 2=u 2+w(\) ngpi \() * w(n g p i)\)
350 CONTINUE
ij \(=1\)
\(\mathrm{u} 3=\mathrm{u} 1 / \mathrm{u} 2\)
DO 370 i \(=1, n\)
DO \(360 \mathrm{j}=1, \mathrm{n}\)
ncons1 \(=\) ncons \(+i j\)
w (ncons1) \(=0.0\)
IF (i.EQ.j) w(nconsl) \(=u 3\)
\(i j=i j+1\)
continue
\(n x p i=n x+i\)
ngpi \(=n g+i\) \(w(\) nxpi \()=u 3 * w(n g p i)\)
370 CONTINUE
\(\mathrm{u} 2=\mathrm{u} 3 * \mathrm{u} 2\)
GO TO 430
380 CONTINUE
\(\mathrm{u} 2=0.0\)
DO \(420 \mathrm{i}=1, \mathrm{n}\) \(\mathrm{u} 3=0\). ij \(=1\) IF (i.EQ.1) GO TO 400 ii = i - 1 DO \(390 \mathrm{j}=1, \mathrm{ii}\)
\(n g p j=n g+j\)
ncons1 = ncons \(+i j\)
\(\mathrm{u} 3=\mathrm{u} 3+\mathrm{w}(\) ncons 1\() * w(\) ngpj \()\)
\(i j=i j+n-j\)
390 CONTINUE
400 CONTINUE DO \(410 \mathrm{j}=1, \mathrm{n}\)
nconsl \(=\) ncons \(+i j\)
ngpj \(=n g+j\)
\(\mathrm{u} 3=\mathrm{u} 3+\mathrm{w}(\) ncons 1\() * w(\) ngpj \()\)
\(i j=i j+1\)
410 CONTINUE \(\mathrm{ngpi}=\mathrm{ng}+\mathrm{i}\) \(\mathrm{u} 2=\mathrm{u} 2+\mathrm{u} 3 * \mathrm{w}(\mathrm{ngpi})\) nxpi \(=n x+i\) \(w(\) nxpi \()=u 3\)
420 CONTINUE
430 CONTINUE
\(\mathrm{u} 4=1.0+\mathrm{u} 2 / \mathrm{ul}\)
DO 440 i \(=1, n\) \(n \times p i=n x+i\) ngpi \(=n g+i\)
\(w(n g p i)=u 4 * w(i)-w(n x p i)\)
440 CONTINUE
ij \(=1\)
DO 460 i \(=1, n\)
\(n x p i=n x+i\)
u3 \(=w(i) / u 1\)
\(u_{4}=w(n \times p i) / u 1\)
DO \(450 j=1, n\)
nconsl \(=\) ncons \(+i j\)
\(\mathrm{ngpj}=\mathrm{ng}+\mathrm{j}\)
\(w(\) ncons1) \(=w(\) ncons1) \(+u 3 * w(n g p j)-u 4 * w(j)\)
\(i j=i j+1\)
450
CONTINUE
460 CONTINUE
\(\mathrm{dgl}=0.0\)
DO \(500 \mathrm{i}=1, \mathrm{n}\)
\(u_{3}=0.0\)
\(\mathrm{ij}=\mathrm{i}\)
IF (i.EQ.1) GO TO 480
ii \(=1-1\)
DO \(470 \mathrm{j}=1\), ii
ncons1 \(=\) ncons \(+i j\)
\(\mathrm{u} 3=\mathrm{u} 3-\mathrm{w}(\) ncons 1\() * \mathrm{~g}(\mathrm{j})\)
                    \(i j=i j+n-j\)

470 CONTINUE
480 CONTINUE
DO \(490 j=1, n\)
ncons1 = ncons + ij
\(\mathrm{u} 3=\mathrm{u} 3-w(\) ncons 1\() * g(j)\)
ij \(=1 j+1\)
490 CONTINUE
\(\mathrm{dg} 1=\mathrm{dg} 1+\mathrm{u} 3 * \mathrm{~g}(\mathrm{i})\)
\(\mathrm{w}(\mathrm{i})=\mathrm{u} 3\)
500 CONTINUE
IF (dg1.GT.0.) GO TO 320
rsw = .false.
GO TO 40
9000 FORMAT ( 10 H iteration, \(\mathrm{i} 5,20 \mathrm{H} \quad\) function calls, \(\mathrm{i} 6 / 5 \mathrm{Hf}=\), els.8,
\(+\quad 13 \mathrm{H}\) g-squared \(=\), el5.8/)
END```

