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Abstract. We discuss numerical and theoretical results for models of magnetization
switching in nanoparticles and ultrathin films. The models and computational methods
include kinetic Ising and classical Heisenberg models of highly anisotropic magnets
which are simulated by dynamic Monte Carlo methods, and micromagnetics models of
continuum-spin systems that are studied by finite-temperature Langevin simulations.
The theoretical analysis builds on the fact that a magnetic particle or film that is
magnetized in a direction antiparallel to the applied field is in a metastable state.
Nucleation theory is therefore used to analyze magnetization reversal as the decay of
this metastable phase to equilibrium. We present numerical results on magnetization
reversal in models of nanoparticles and films, and on hysteresis in magnets driven by
oscillating external fields.

1 Introduction

In recent years, the interest in nanostructured magnetic materials has soared for
a variety of reasons. For one, it is only quite recently that it has become possible
to synthesize and measure nanometer-sized magnetic particles in small, ordered
arrays, often by techniques that involve modern, atomic-resolution microscopies,
such as scanning-tunneling microscopy (STM), atomic force microscopy (AFM),
or magnetic force microscopy (MFM) [1–5]. AFM and MFM pictures of an array
of nanometer-sized iron pillars, fabricated by STM-assisted chemical vapor de-
position [6], are shown in Fig. 1. The techniques are currently becoming precise
enough to even allow investigation of individual nanoparticles. At the same time,
computers have had a profound influence in two different ways. The need for ever
higher data-recording densities has driven the size of particles used in recording
media down into the nanometer range [7–9], while the rapidly increasing power
of computers has made it feasible to perform simulations of the dynamic proper-
ties of realistic model systems of sizes comparable to experimental ones [10–12].
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Fig. 1. Array of nanoscopic iron pillars of dimensions approximately 40×40×200 nm3,
grown by STM-assisted chemical vapor deposition. (a) AFM image of the array of
pillars, as grown on top of a µm-size Hall-effect magnetometer. (b) MFM image of the
array after thermal randomization in near-zero applied field. The magnetic field from
each pillar is imaged and seen to point along the major axis of the pillars, either up
(white) or down (black). (c) MFM image of the array in an applied field of 200 G.
Almost all the magnets are aligned with the field. Images courtesy of D.D. Awschalom.
(a) and (b) after [6]

Modern magnetic recording technologies involve particles that are near the
superparamagnetic limit . In this limit, the energy barrier separating the two en-
ergetically degenerate magnetic orientations is small enough that thermal fluc-
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tuations frequently lead to spontaneous switching of the orientation. As a result,
the magnetic coercivity decreases with decreasing particle size for particles be-
low the superparamagnetic size limit. The limit appears as a maximum in a
curve showing switching field or coercivity versus particle size, such as in Fig. 2.
Since the random magnetization reversals in particles below the superparamag-
netic limit degrade recorded information, the engineering challenge has been to
keep the energy barrier in the individual particles high enough to make sponta-
neous switching infrequent while keeping the material magnetically soft enough
to facilitate recording. As the volumes of the magnetic particles have shrunk
to reach recording densities on the order of 100 Gb/in2 or more [8,13], mate-
rials with higher coercivities due to strong crystalline anisotropies have been
employed [14]. In order to enhance engineering practices, it is essential to extend
the physical understanding of the superparamagnetic limit past the theories of
uniformly mangetized particles to include magnetization reversal dynamics that
proceed through localized regions of reversed magnetization that subsequently
spread throughout the magnetic element.

Fig. 2. Effective switching field (analogous to coercivity) versus particle size for single-
domain ferromagnetic barium ferrite particles (� with error bars, right vertical and
top horizontal axes, experimental results) and for two-dimensional L×L Ising systems
(data points connected by solid lines, left vertical and bottom horizontal axes). The
barium ferrite data were digitized from Fig. 5 of [15]. The Ising data are Monte Carlo
simulations from [16] for waiting times τ=100 Monte Carlo Steps per Site (MCSS) (◦)
and 1000 MCSS (×) at T=0.8Tc, where Tc is the exact Ising critical temperature. After
[17]
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The remainder of this article is organized as follows. In Sec. 2 we summarize
some aspects of the theory of magnetization switching in anisotropic magnets,
including effects of anisotropy (Sec. 2.1), nucleation theory (Sec. 2.2), and model
systems (Sec. 2.3). In Sec. 3 we give some new results of finite-temperature micro-
magnetic simulations of magnetic nanoparticles. In Sec. 4 we discuss hysteresis in
nanoparticles and ultrathin films, in particular the frequency dependence of hys-
teresis loops (Sec. 4.1) and a dynamic order-disorder phase transition (Sec. 4.2).
A brief summary and conclusions are given in Sec. 5.

2 Theory of Magnetization Switching in Anisotropic
Magnets

2.1 Effects of Magnetic Anisotropy

The most common description of magnetization switching is the mean-field,
uniform-rotation theory of Néel [18] and Brown [19,20]. One assumes uniform
rotation of all localized moments in the particle to avoid an energy barrier due
to exchange interactions of strength J . The remaining barrier, ∆, is caused by
magnetic anisotropy – a combination of crystal-field and magnetostatic effects.
The equilibrium thickness of a wall separating oppositely magnetized domains is
`w ∝ √

J/∆. For particles smaller than `w with small anisotropy, the uniform-
rotation picture is reasonable. If the anisotropy is largely magnetostatic, the
competition between exchange interactions and the demagnetizing field favors
domains of opposite magnetization in particles larger than `w. The domains
control switching through the field-driven motion of preexisting domain walls
[21–23]. However, if the anisotropy is largely crystalline, there exists a range of
single-domain particle sizes that are larger than `w but smaller than the size at
which the particle becomes multidomain (often the case in ultrathin films [24]).

In anisotropic nanomagnets the state of uniform magnetization opposite to
the applied field constitutes a metastable phase. This nonequilibrium phase de-
cays by thermally assisted nucleation and subsequent growth of localized regions,
inside which the magnetization is parallel with the field [16]. These growing re-
gions are referred to as droplets to distinguish them from equilibrium domains.
This mechanism yields results very similar to recent experiments on single-
domain nanoscale ferromagnets [25].

2.2 Application of Nucleation Theory to Magnetization Reversal

Here we present a short summary of homogeneous nucleation theory as it applies
to uniaxial magnets. This theory covers situations in which the switching events
are nucleated by thermal fluctuations, without the influence of defects. Further
details are available in [10,16,17,26–29].

The central problems in nucleation theory are to identify the fluctuations
that lead to the decay of the metastable phase and to obtain their free-energy
cost relative to the metastable phase. For anisotropic systems dominated by



Magnetization Reversal in Model Nanoparticles and Films 5

0.0 2.0 4.0 6.0 8.0 10.0
1/H [J

-1
]

0

10

20

30
ln

(τ
)

20x20
160x160

0.0 0.5 1.0 1.5
1/H

2
 [J

-2
]

0

10

20

30

10x10x10
40x40x40

d=2, T=1.3J=0.57TC         (a) d=3, T=2.0J=0.44TC         (b)
Metropolis dynamics Glauber dynamics

Fig. 3. Lifetimes for two-dimensional L2 Ising systems with L = 20 and 160 at T =
0.57Tc (a), and three-dimensional L3 Ising systems with L = 10 and 40 at T = 0.44Tc

(b). The data points are direct Monte Carlo simulation results, while the lines are
extrapolations with the Projected Dynamics (PD) accelerated dynamics algorithm [33–
35], based on the smallest system at the weakest field. The sharp changes in slope
correspond to the DSp, with the deterministic regime to the left and the stochastic
regime to the right. The ratio of the slopes of the curve in the single-droplet and
multidroplet regimes is (d + 1), in agreement with (2) and (3). After [34]

short-range interactions, these fluctuations are compact droplets of radius R.
The free energy of the droplet has two competing terms: a positive surface term
∝ σ(T )Rd−1 and a negative bulk term ∝ |H |Rd where d is the spatial dimension,
σ(T ) is the surface tension of the droplet wall, and H is the applied magnetic field
along the easy axis. Their competition yields a critical droplet radius, Rc(H, T ) ∝
σ(T )/|H |. Droplets with R < Rc most likely decay, whereas droplets with R >
Rc most likely grow to complete the switching process. The free-energy cost of
the critical droplet (R = Rc) is ∆F (H, T ) ∝ σ(T )d/|H |d−1. Nucleation of critical
droplets at nonzero temperature T is a stochastic process with nucleation rate
per unit volume given by an Arrhenius relation:

I(H, T ) ∝ |H |K exp [−β∆F (H, T )] ≡ |H |K exp
[−βΞ(T )/|H |d−1

]
, (1)

where β = 1/kBT (kB is Boltzmann’s constant), Ξ(T ) is the H-independent
part of ∆F , and the prefactor exponent K is known for many models from
field-theoretical arguments [17,30–32]. The particles are of finite size L, and the
dominant reversal mechanism depends on H , T , and L.

In the weakest applied fields, the particles are in the “Coexistence” (CE)
regime, with the average metastable lifetime τCE(H, T, L) ∼ exp

[
2βσ(T )Ld−1

]
.

(This result is nearly independent of the boundary conditions [27].) The regime
corresponds to Rc > L, and the associated L-dependent crossover field is called
the Thermodynamic Spinodal (ThSp) [17,28,29]. Estimating its value by assum-
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Fig. 4. Metastable phase dia-
gram for the two-dimensional
Ising model at temperatures up
to Tc. The dashed curve rep-
resents HMFSp(T ). Data points
connected by solid line seg-
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several values of L between
20 and 106. The filled data
points are the results of Monte
Carlo simulations, while the
empty data points represent
a low-temperature approxima-
tion [40] for large systems

ing Rc(H, T, L) ≈ L, one finds HThSp(T, L) ∼ L−1. The L-dependence of HThSp

is given by the dotted curve in Fig. 2.
For |H | > HThSp (but not too large), the lifetime is determined by the inverse

of the total nucleation rate,

τSD(H, T, L) ≈ (
LdI(H, T )

)−1 ∝ L−d|H |K exp
[
βΞ(T )|H |d−1

]
, (2)

which is inversely proportional to the particle volume, Ld (see Fig. 3). The
subscript SD stands for Single Droplet and indicates that in this regime the
switching is normally completed by the first droplet to reach Rc. In both of
the stochastic reversal regimes(CE and SD) the probability that switching has
not taken place within a time t after the field reversal, Pnot(t), takes the form
Pnot(t) = exp(−t/τ).

A second crossover, called the Dynamic Spinodal (DSp) [17,28,17,?], is a
consequence of the finite velocity, v ≈ ν|H |, of the surface of a growing super-
critical droplet [23]. A reasonable criterion to locate the DSp is that the average
time between nucleation events, which is τSD, should equal the time it takes a
droplet to grow to a size comparable to L. This yields the asymptotic relation
HDSp(T, L) ∼ [ln(L)]1/(d−1). The L-dependence of HDSp is given by the dashed
curve in Fig. 2. For |H | > HDSp, the metastable phase decays through many
droplets which nucleate and grow independently in different parts of the system.
In this Multidroplet (MD) regime [17,28,29], the classical Kolmogorov-Johnson-
Mehl-Avrami (KJMA) theory of metastable decay in large systems [37–39] gives
the lifetime

τMD(H, T ) ∝ [
I(H, T )(ν|H |)d/(d + 1) ln 2

]−1/(d+1)
, (3)

independent of L (see Fig. 3). In the MD regime Pnot(t) ≈ erfc ((t − τ)/∆) [16],
where the width ∆ of the switching-time distribution depends on H , T , and L.

For very strong fields nucleation theory becomes irrelevant to the switching
behavior. A reasonable way to estimate the crossover to this Strong-Field (SF)
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regime is to require that the critical radius should be on the order of the lattice
constant a. Specifically, requiring Rc = a/2, we get the crossover field called the
mean-field spinodal (MFSp) HMFSp(T ) ≈ 2σ(T )/meq(T ), where meq(T ) is the
zero-field equilibrium magnetization. The “metastable phase diagram” in Fig. 4
shows HMFSp(T ), as well as HDSp(T ) for two-dimensional Ising systems of widely
varying sizes. Note the logarithmically slow convergence to zero of HDSp with
increasing system size. As a result, even macroscopic metastable systems may
be “small” in the sense that they decay via the single-droplet mechanism.

The switching field, Hsw(tw, T, L), is the field required to observe a specified
average waiting time, tw. It is found by solving τ in the relevant region (CE, SD,
or MD) for H with τ=tw. The resulting L dependence of Hsw is a steep increase
with L in the CE regime, peaking near the ThSp, followed by a decrease in
the SD regime towards a plateau in the MD regime [16,26]. This behavior is
illustrated in Fig. 2. Note that the maximum in Hsw (related to the maximum
coercivity) occurs even in the absence of dipole-dipole interactions. For other
boundary conditions and in systems with dipole interactions the Hsw versus L
curve can even have more that one maximum [27]. Maximizing the coercive field
is important in magnetic recording applications.

2.3 Statistical-mechanical Model Systems

Simplified statistical-mechanical models are often amenable to analytic solu-
tions, with no free fitting parameters, that agree well with the numerical results.
Despite their lack of realism, they are therefore important as testing grounds
for theoretical descriptions of different switching mechanisms. In more realistic
models, that correspond to larger numbers of actual materials, analytic results
are difficult to come by, but the physical insights gained from the simpler mod-
els can be readily applied. Here we introduce three such models in order of
increasing complexity: the kinetic Ising model, the classical Heisenberg model,
and finite-temperature Langevin micromagnetic models.

The Ising Model The simplest microscopic model of a ferromagnet is the
nearest-neighbor Ising model, in which discrete spins, si = ±1, are placed on
the sites (labeled i) of a two- or three-dimensional lattice. The spins interact
with their neighbors with a strength J , so that the model is described by the
Hamiltonian

H = −J
∑
〈i,j〉

sisj − H
∑

i

si . (4)

The model can easily be generalized to longer-range interactions, different lattice
geometries, etc. Despite its apparent simplicity, it has many of the attributes of
more complicated systems, while many of its properties are exactly known. It is
therefore a very commonly studied model.

The Ising Hamiltonian, (4), is not a true quantum-mechanical Hamiltonian,
and the Ising model therefore does not have an intrinsic dynamic. To simulate
thermal fluctuations one uses a local stochastic dynamic which does not conserve
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the order parameter. An often-used example is the Metropolis [41] dynamic with
the spin-flip probability

WM(β∆E) = min [1, exp (−β∆E)] , (5)

where ∆E is the energy change that would ensue if the flip were to occur.
Another popular choice is the Glauber dynamic [42], defined by

WG(β∆E) =
exp (−β∆E)

1 + exp (−β∆E)
. (6)

The basic time scale of the MC simulation is not known from first principles, but
it is expected to be on the order of a typical inverse phonon frequency, 10−9–
10−13 s. In dynamics such as these, where each potential flip is accepted or
rejected randomly, flips can become very rare when rejection rates are high. To
perform simulations on the very long time scales necessary to observe metastable
decay, one needs to use rejection-free MC algorithms [43–46] and other advanced
algorithms [33–35].

Analogous stochastic time evolutions can also be imposed on models whose
spins have continuous degrees of freedom. Here we briefly discuss one such model,
the anisotropic Heisenberg model.

The Anisotropic Heisenberg Model Like the Ising model, the Heisenberg
model consists of spins located at discrete points on a lattice. However, unlike
the spins in the Ising model, which equal ±1, Heisenberg spins are n-dimensional
vectors of unit length. When n = 2, this model is usually referred to as the XY or
plane-rotor model. The Hamiltonian for the nearest-neighbor Heisenberg model
with only interaction anisotropy is

H = −
∑
〈i,j〉

∑
n

[Jnsn,isn,j ] − H ·
∑

i

si , (7)

where sn,i is the n-th component of the i-th spin vector si, Jn are coupling
constants, and H is the external magnetic field. For the example of this model
presented here, n = 3, Jx = Jy = 1, Jz = 2, H = Hz ẑ, and the lattice is a
two-dimensional L × L square lattice.

There are many stochastic dynamics for the Heisenberg model which yield
identical equilibrium results, but have different relaxation dynamics. The dy-
namic assumed here consists of selecting a spin vector at random, then choosing
a new orientation for that spin, uniformly distributed over the unit sphere, and
then accepting or rejecting the new configuration based on (6). Other dynam-
ics exist which make only small changes to spin orientations, but these are not
discussed here.

The simulation begins with all si = −ẑ and Hz > 0. This metastable phase
then decays in a manner consistent with homogeneous nucleation and growth.
However, unlike the Ising model, the continuous degrees of freedom add addi-
tional complications, such as effective long-range interactions between droplets.
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Fig. 5. Switching behavior for an anisotropic n = 3 Heisenberg model on a two-
dimensional L × L square lattice. The parameters are Jx = Jy = 1, Jz = 2, and
T = 1, which is below the critical temperature for this model. The circles are for a
system with L = 16, and the single-droplet (SD), multidroplet (MD), and strong-field
(SF) regimes are labeled. The insets show typical system configurations during the
switching process for systems with L = 64. Note that the dynamic spinodal (DSp) de-
pends on L, and thus the SD and MD regimes appear at different fields for L = 16 and
L = 64. The grayscale for the insets shows sz with lighter shades indicating metastable
spins and darker shades indicating more stable spins

We have not yet attempted to quantify these differences. Figure 5 shows lifetimes
and configuration snapshots in the single-droplet, multidroplet, and strong-field
regimes for an anisotropic Heisenberg model at a temperature below criticality.
The field dependence of the lifetime is seen to be very similar to that of the
two-dimensional Ising model, shown in Fig. 3(a).

Finite-temperature Langevin Micromagnetics More realistic representa-
tions of nanoscale magnetic systems can be obtained by micromagnetic modeling.
In this method the “spins” are coarse-grained magnetization vectors M(ri); each
represents the magnetization within a cell centered at position ri. In this low-
temperature model [47], the vectors have a fixed magnitude Ms corresponding
to the bulk saturation magnetization density. The time evolution of each spin
is governed by the damped precessional motion given by the Landau-Lifshitz-
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Fig. 6. Magnetization along
the pillar long axis, Mz, at
three times during the switch-
ing process. Light shades rep-
resent the metastable orienta-
tion and dark shades the equi-
librium orientation. The micro-
magnetic simulation shown in
this figure models an individ-
ual pillar using a 7 × 7 × 49
lattice at T = 20 K. The pillar
is shown in a one-quarter cut-
away view

Gilbert (LLG) equation [48,49]

dM(ri)
dt

=
γ0

1 + α2
M(ri) ×

(
H(ri) − α

Ms
M (ri) × H(ri)

)
, (8)

where the electron gyromagnetic ratio is γ0 = 1.76 × 107 Hz/Oe [49], and α is
a phenomenological damping parameter. The local field at the i-th spin, H(ri),
is generally different at each location. This field is a linear superposition of
fields, one for each type of interaction in the system. Typical examples include
fields from external sources, exchange, crystalline anisotropy, and dipole-dipole
interactions. Thermal fluctuations may also contribute a term: a stochastic field
Hn(ri) that is assumed to fluctuate independently for each spin [20]. The fluc-
tuations are assumed Gaussian, each with zero first moment and with the second
moments given by the fluctuation-dissipation relation [20]

〈Hnµ(ri, t)Hnµ′(r′
i, t

′)〉 =
2αkBT

γ0MsV
δ (t − t′) δµ,µ′δi,i′ , (9)

where Hnµ indicates one of the Cartesian components of Hn. Here V = (∆r)3

is the discretization volume of the cell, δµ,µ′ is the Kronecker delta representing
the orthogonality of the Cartesian coordinates, and δ(t − t′) is the Dirac delta
function.
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While this stochastic term necessitates careful treatment of the numerical
integration in time, the most computationally intensive part of the calculation
involves the dipole-dipole term. For systems with more than a few hundred model
spins, it is necessary to use a sophisticated algorithm such as the fast-multipole
method (FMM) [50,51]. An extensive discussion of the issues involved in finite-
temperature simulations of micromagnetics is presented in [12]. The growth of a
droplet during the switching of an iron nanopillar at T=20 K is shown in Fig. 6.
Nucleation is observed to occur at the ends of the pillars [12].

3 Finite-temperature Micromagnetics Results for
Nanoparticles

Micromagnetic simulations have been applied to the study of iron pillars mod-
eled after those shown in Fig. 1. Unless otherwise noted, the model iron pillars
discussed here are 5.2 nm × 5.2 nm × 88.4 nm. The cross-sectional dimensions
are small enough, about two exchange lengths, that the only significant inhomo-
geneities in the magnetization are those in the z direction, i.e. along the long
axis of the pillar [52,53]. In light of this, the pillars have been modeled as a linear
system of magnetic cubes with side 5.2 nm. This model, discussed previously in
[12,54], includes thermal fluctuations, exchange, and dipole-dipole interactions.

The results for Pnot(t), with T=100 K are shown in Fig. 7 for applied fields
of H=1000 Oe and 800 Oe. Here switching is defined to occur when the z-
component of the total magnetization, Mz, passes through zero. The form of
Pnot(t) is not exponential, which can be explained by the fact that nucleation
of the reversed droplets is easier at the ends of the pillars than in the middle.
Assuming that the nucleation rate for droplets at the end of the pillars is con-
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Fig. 7. Probability of not
switching before time t,
Pnot(t), for micromagnetic
simulations at T=100K
with applied fields of
1000 Oe and 800 Oe as
labeled. The solid curves
are simulation data for 624
and 252 switches, respec-
tively, for pillars modeled
as a one-dimensional chain
of spins. The dashed curves
are fits to the theoretical
model, (10)
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stant, I, and that the earliest time switching can occur because of the finite
velocity of droplet growth is t0, it can be shown that the probability of not
switching is [12]

Pnot (t) =




1 t < t0
e−2I(t−t0) [1 + 2I(t − t0)] t0 ≤ t < 2t0
e−2I(t−t0) [1 + 2It0] 2t0 ≤ t

. (10)

The parameters are fitted by matching the first and second moments of the
simulation results to those of the theoretical forms. As long as the applied field
is relatively weak, the agreement between the theory and the simulations is quite
good. Switching at times t0 ≤ t < 2t0 is possible only when nucleation occurs at
both ends.

Since the nucleation occurs at the ends, the dependence of the switching on
the size of the system is different from that seen in isotropic models. Results for
the parameters t0 (squares) and 1/I (circles) at T=100 K and H=1000 Oe are
shown in Fig. 8 for pillars of different lengths, i.e. composed of different numbers
of cubes 5.2 nm on a side. The nucleation rate is nearly constant, indicating that
the size of the energy barrier does not depend on the pillar length. The growth
time, indicated by t0, however, increases as the droplets have to grow farther to
switch the magnetization. The nearly linear increase with pillar length indicates
that the interface velocity is not significantly affected by the demagnetizing field
associated with the high aspect ratio of the pillars.

Finally, changes in the switching mode as the field is changed are shown
in Fig. 9. Here the mean switching time, 〈tsw〉, and standard deviation, σt,
are shown versus applied field for the 88.4 nm long pillars at T=100 K. The
mean, 〈tsw〉, and standard deviation, σt, of the switching time tsw versus inverse
applied field for pillars of the same type as considered in Fig. 7. At weak fields
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t0 Fig. 8. Inverse nucleation
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lengths. The rate of nucle-
ation at the ends of the pil-
lars depends only weakly
on the pillar length, and
therefore likewise the en-
ergy barrier. The earliest
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since the droplets have to
grow for a longer time to
switch longer pillars
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the mean and standard deviation are nearly equal, where the exponential tail at
t > 2t0 dominates (10). As the applied field is increased, the barrier to nucleation
decreases, and the exponential behavior becomes less dominant. Eventually, (10)
breaks down as the multidroplet reversal mechanism becomes important. The
multidroplet nature of the reversal has been verified by direct observation of the
switching, which shows droplets nucleating away from the ends at H=1000 Oe.

4 Hysteresis

Hysteresis is common in many nonlinear systems driven by an oscillating external
force, including nanostructured magnets in an oscillating field. It occurs when
the dynamics of the system is too sluggish to keep pace with the force. The term
was coined by Ewing in the context of magnetoelasticity [55] from the Greek
word husterein (

c

υστερέω) which means “to be behind.”

4.1 Hysteresis-loop Areas

Among the earliest aspects of hysteresis to receive sustained interest is the
hysteresis-loop area. In the magnetic context of this article, the hysteresis loop is
a plot of magnetization versus applied field, and its area is given by the integral
A = − ∮

m(H)dH . A typical hysteresis loop for a small system with thermal
noise is shown in Fig. 10. The particular importance of the loop area is that it
corresponds to the energy dissipation per period of the applied field. It is thus
relevant to the performance of most electrical and electronic equipment. Recent
experiments on ultrathin Fe and Co films with Ising-like anisotropy have consid-
ered the frequency dependence of the hysteresis-loop areas [57–60]. The results
of these studies were interpreted in terms of power laws, but with exponents that
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vary widely between experiments. The experimental situation thus may appear
somewhat unclear.

A resolution is provided by the nucleation-and-growth picture of magne-
tization switching presented here. We assume that the system is driven by
a sinusoidally oscillating field, H(t) = H0 sin(ωt). Since the nucleation rate,
which has the dimension of a frequency per unit volume, is proportional to
exp

[−βΞ(T )/|H |d−1
]

by (1), one would expect that the field at which the mag-
netization changes sign should depend on the frequency as − (lnω)−1/(d−1). The
loop area is approximately proportional to the switching field multiplied by the
saturation magnetization (see Fig. 10). Thus, one would expect the loop area
to show this logarithmic frequency dependence in the asymptotic low-frequency
limit. Analytic calculations have confirmed this asymptotic result. However, for
higher, but still low, frequencies they show a very slow crossover to the asymp-
totic behavior, which is confirmed by Monte Carlo simulations. Such a slow
crossover could easily be mistaken for a power law, even when observed over
several decades in frequency [56,61,62]. This result was shown to hold, both
when the magnetization reversal occurs via the single-droplet mechanism [62]
and the multidroplet mechanism [56], even though the details are different. The
behavior is illustrated in the top part of Fig. 11. Recently we have also found
analogous behavior in micromagnetics simulations of nanometer-sized iron pil-
lars, see the bottom part of Fig. 11. In these figures the frequency is given in
terms of the dimensionless frequency 1/R = ωτ(H0, T )/2π.

4.2 Dynamic Phase Transition

Different phenomena occur in hysteretic systems as the driving frequency is in-
creased. Eventually the field will vary too quickly for the system to have time to
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Fig. 11. The hysteresis-loop area, A, versus the dimensionless frequency, 1/R. (Top)
Two-dimensional Ising model of an ultrathin film. Data points: Monte Carlo simulations
for L = 64, T=0.8Tc, and H0=0.3J . For these parameters the magnetization switch-
ing occurs via the multidroplet mechanism, except for the lowest frequencies. Solid
curve: numerical integration for sinusoidally varying field. Dotted curve: numerical in-
tegration for linearly varying field. Dot-dashed curve: numerical integration assuming
magnetization reversal via the single-droplet mechanism. Dashed curve: low-frequency
asymptotic solution. Power-law fits would yield very different effective exponents for
fits centered at different frequencies. After [56]. (Bottom) Micromagnetic model of
iron pillars with length 88.4 nm and square cross-section 5.2 nm × 5.2 nm for T=100K
(circles) and T=20K (squares) with H0=2000 Oe. The lines are guides to the eye. The
inset shows the correlation between the magnetization and field versus frequency. The
lowest-frequency zero-crossing, indicating a resonance condition, occurs at roughly the
same frequency as the maximum in A

switch during a single period. Thus, low frequencies lead to symmetric hysteresis
loops, such as in Fig. 10, while high frequencies produce loops in which the mag-
netization oscillates about one or the other of its zero-field equilibrium values.
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Fig. 12. The dynamic phase transition in a two-dimensional Ising system at T = 0.8Tc,
driven by a square-wave oscillating field of amplitude H0 = 0.3J . After [65]. (a) The
dynamic order parameter, 〈|Q|〉, versus the dimensionless period R for several system
sizes. (b) The order-parameter fluctuation strength, XQ

L , versus R for several system
sizes

For small systems or weak field amplitudes, such that the magnetization reversal
occurs via the single-droplet mechanism, this results in stochastic resonance [62].

For large systems or stronger fields, such that the magnetization switching
occurs via the multidroplet mechanism, the transition from symmetric to asym-
metric hysteresis loops becomes a genuine critical phenomenon at a sharply
defined critical frequency. The transition is essentially due to a competition be-
tween two time scales: the metastable lifetime, τ(H0, T ), and the frequency of
the applied field, ω/2π. As a result, the critical value of the reduced frequency
1/R is on the order of unity. This nonequilibrium phase transition was first
observed in numerical solutions of mean-field equations of motion for ferromag-
nets in oscillating fields [63,64]. Subsequently it has been observed in numerous
Monte Carlo simulations of kinetic Ising systems [56,65–75] and in further mean-
field studies [68,70,71,73,76]. It may also have been experimentally observed in
ultrathin films of Co on Cu(100) [58,77].

In this far-from-equilibrium phase transition the role of order parameter is
played by the period-averaged magnetization, Q = (ω/2π)

∮
m(t)dt. This quan-

tity is shown in Fig. 12(a) versus the dimensionless period R for several system
sizes. The order-parameter fluctuation strength, XQ

L = L2
[〈Q2〉 − 〈|Q|〉2], which

corresponds to the susceptibility in an equilibrium system, is shown for several
values of L in Fig. 12(b). Both the order parameter and its fluctuations de-
pend on L in a way very similar to data from simulations of equilibrium phase
transitions. And, indeed, formal finite-size scaling analysis of the Monte Carlo
data [56,65,75], as well as analytical arguments [78,79], have shown that this
far-from-equilibrium phase transition belongs to the same universality class as
the equilibrium phase transition in the Ising model in zero field. This is a quite
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remarkable result, as it extends the scope of an equilibrium universality class to
a far-from equilibrium system.

5 Summary

In this article we have presented numerical and theoretical results on magne-
tization reversal and hysteresis in models of magnetic nanoparticles and ultra-
thin films. Models that were explicitly considered are kinetic Ising and clas-
sical Heisenberg models, which were studied by dynamic Monte Carlo sim-
ulations, and continuum-spin micromagnetics models, which were studied by
finite-temperature Langevin-equation methods. The simulation results were in-
terpreted within the context of nucleation theory, and it was shown how the
reversal modes change from single-droplet to multidroplet upon increasing the
strength of the applied field or the size of the system. Computer simulations of
model systems such as those presented here enable one to study in detail the
statistical properties of the reversal processes, as well as the time dependent
internal magnetization structure. Such simulation results have now attained suf-
ficient quality that they can fruitfully be compared with present and future
experiments.
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